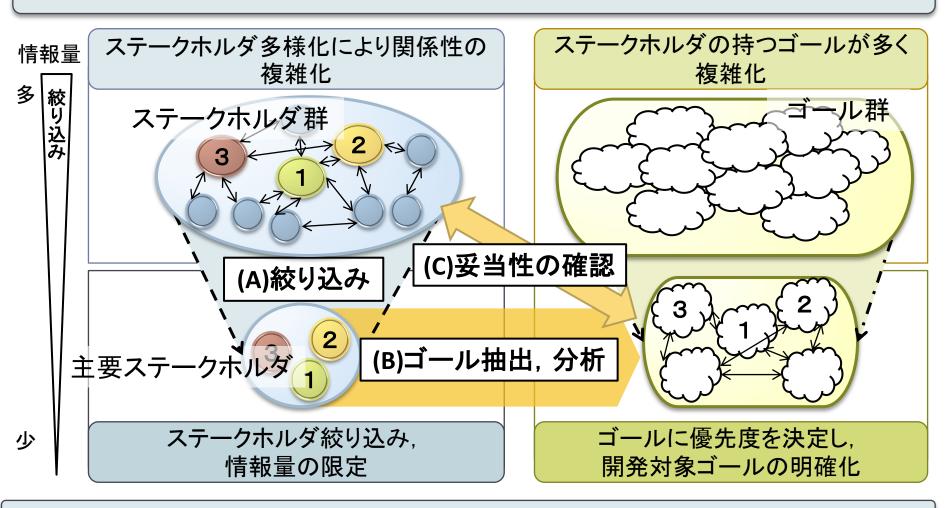
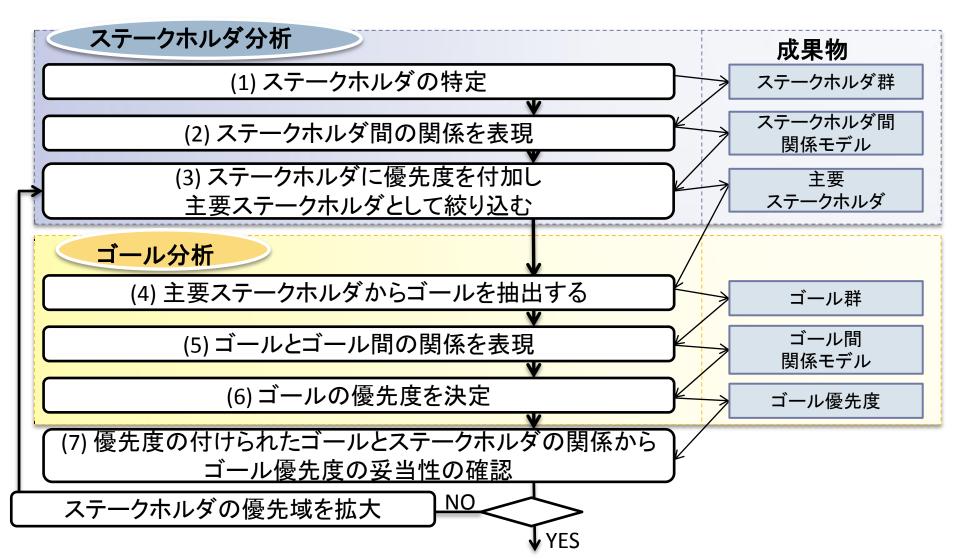
ステークホルダを中心とするゴール優先度決定プロセスの提案

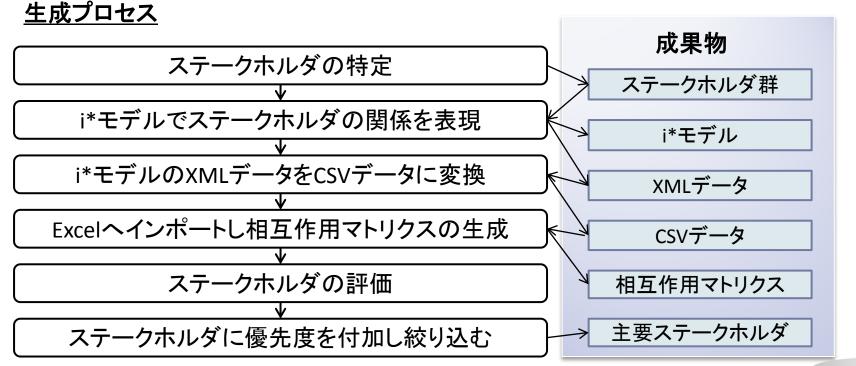

2008MI105 木下康介 2008MI274 山下和希

シナリオ

- ・研究の全体像
- 相互作用マトリクスの自動生成
- プロジェクトの木構造
- まとめと今後の課題
- 参考文献

研究の全体像[1/2]


ステークホルダの絞り込みによる、分析情報を限定したゴール優先度決定プロセスを提案


ステークホルダ間、ゴール間の関係を理解し分析可能

研究の全体像[2/2]

ゴールの優先度決定プロセス

相互作用マトリクスの自動生成[1/3]

VMI	CSV	相互関係原因	結 果	SH(A)	SH(B)	SH(C)	総和(AS)
XML XML/1—+	CSV	SH(A)					
		SH(B)					
		SH(C)		-			

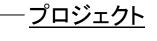
相互作用マトリクスの自動生成[2/3]

XMLデータの内部構造

```
<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="2.0" ... >
<edu.toronto.cs.openome model:Model xmi:id=" 2RkzoAkbEeGHmqSyXZBPQg">
 <dependencies ... />¬
 <dependencies ... /> トリンク情報
 <dependencies ... />__
 <containers ... name="アクタA"> ―― アクタ情報
  <intentions ... name="タスクA"/> ー タスク情報
  <intentions ... name="タスクB"/> _
 </containers>
 <containers ... name="タスクB"> --- アクタ情報
  <intentions ... name="タスクC"/> —— タスク情報
 </containers>
</edu.toronto.cs.openome model:Model>
<notation:Diagram xmi:id=" 2RkzoQkbEeGHmqSyXZBPQg" type="openome model"
   element=" 2RkzoAkbEeGHmqSyXZBPQg" name="default2.ood" measurementUnit="Pixel">
               <u>図式情報(図形の位置など)</u>
 </notation:Diagram>
</xmi:XMI>
```

相互作用マトリクスの自動生成[3/3]

目標とするCSVデータ


```
,合宿係,参加者,先生,大学,旅行代理店,旅行会社,ホテル,バス会社,能動的総和,Q合宿係,,,,,,,,=SUM(C4:J4),"=ROUND(IMDIV(K4,C12),2)"参加者,,,,,,,=SUM(C5:J5),"=ROUND(IMDIV(K5,D12),2)"  
先生,,,,,,,=SUM(C6:J6),"=ROUND(IMDIV(K6,E12),2)"  
大学,,,,,,,=SUM(C7:J7),"=ROUND(IMDIV(K7,F12),2)"  
旅行代理店,,,,,,,=SUM(C8:J8),"=ROUND(IMDIV(K8,G12),2)"  
旅行会社,,,,,,,=SUM(C9:J9),"=ROUND(IMDIV(K9,H12),2)"  
ホテル,,,,,,,=SUM(C10:J10),"=ROUND(IMDIV(K10,I12),2)"  
バス会社,,,,,,,,=SUM(C11:J11),"=ROUND(IMDIV(K11,J12),2)"  
受動的総和,=SUM(C4:C11),=SUM(D4:D11),=SUM(E4:E11),=SUM(F4:F11),...  
P,"=PRODUCT(C12,$K4)","=PRODUCT(D12,$K5)","=PRODUCT(E12,$K6),...
```

	合宿係	参加者	先生	大学	旅行 代理店	旅行会社	ホテル	バス会社	能動的 総和	Q
合宿係									0	0
参加者									0	0
先生									0	0
大学									0	0
旅行代理店									0	0
旅行会社									0	0
ホテル									0	0
バス会社									0	0
受動的総和	0	0	0	0	0	0	0	0		
Р	0	0	0	0	0	0	0	0		

プロジェクトの木構造[1/3]

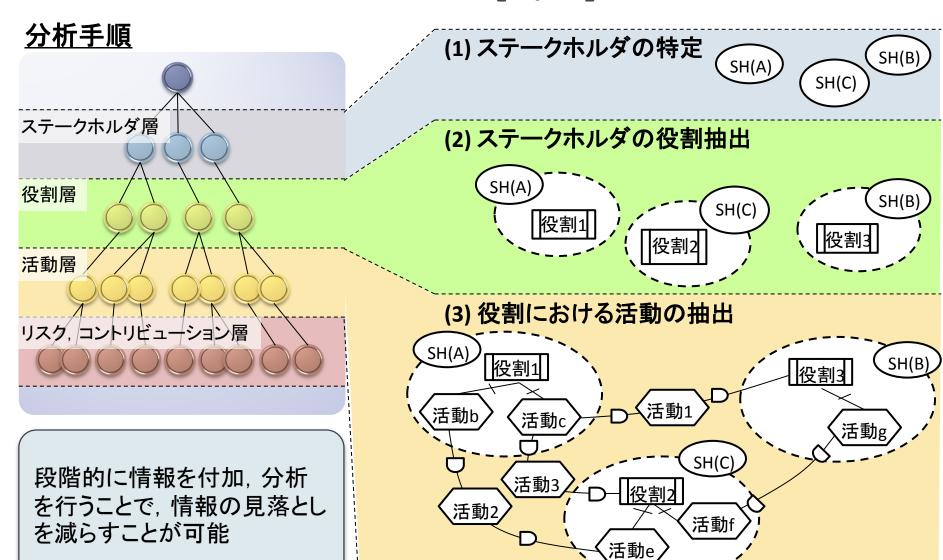
プロジェクトのデータ構造を木構造で表現

ステークホルダ層

プロジェクトに対して特定された ステークホルダ

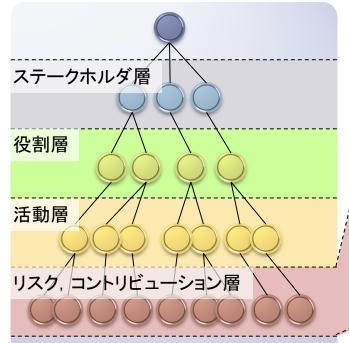
役割層

ステークホルダの持つ役割

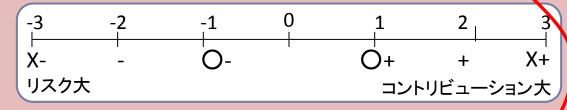

活動層

ステークホルダの持つ役割における 活動

リスク, コントリビューション層

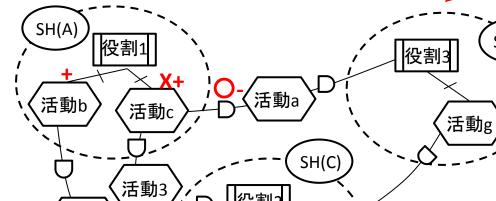

活動によってプロジェクトに及ぼすリスクやコントリビューション

プロジェクトの木構造[2/3]


プロジェクトの木構造[3/3]

<u>分析手順</u>

(4) 活動におけるリスク、コントリビューションの分析


活動	リスク, コントリビューション	評価
活動a	リスク	-1
活動b	コントリビューション	2
活動c	コントリビューション	3
:	:	:

(6) 相互作用マトリクスの作成

相互関係	———— 結 果	SH(A)	SH(B)	総猛	総能	(AS
原因	果	Æ	(B)	総 和 値	総和(AS)	(AS/PS)
CLI(A)	活動a					
SH(A)	活動b					
:	:					

(5) リンク属性の付加

まとめと今後の課題

<u>まとめ</u>

ステークホルダ層

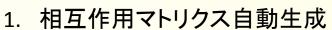
役割層

活動層

リスク、コントリビューション層

OpenOMEで生成されるXMLの木構造を拡張

役割層、リスク、コントリビューション層を追加


リスク、コントリビューションを分析することで、リンク属性の付加

段階的に情報を付加し、分析することで 情報の見落としなどを軽減

<u>今後の課題</u>

ステークホルダ分析のプロセスの定義

- 1. リスク, コントリビューション分析方法の定義
- 2. 相互作用マトリクスの評価の見直し
- 3. 相互作用マトリクスでのステークホルダの優先順位決定
- 4. 例題に適用し分析プロセスの有用性確認

2. ゴール分析方法の定義

参考文献

- D. Glaesser, Crisis Management in the Tourism Industy, くんぷる, 2008
- E. Yu, Social Modeling for Requirements Engineering, 2010.
- i* Intentional STrategic Actor Relationships modelling, http://www.cs.toronto.edu/km/istar/#Software.

ステークホルダを中心とする ゴール優先度決定プロセスの提案 END

2008MI105 木下康介 2008MI274 山下和希