
Dynamic Requirements Specification for
Adaptable and Open Service-Oriented Systems

Ivan J. Jureta, Stéphane Faulkner, Philippe Thiran

Information Management Research Unit, University of Namur, Belgium
iju@info.fundp.ac.be; sfaulkne@fundp.ac.be; pthiran@fundp.ac.be

Abstract. It is not feasible to engineer requirements for adaptable and
open service-oriented systems (AOSS) by specifying stakeholders’ expec-
tations in detail during system development. Openness and adaptability
allow new services to appear at runtime so that ways in, and degrees
to which the initial functional and nonfunctional requirements will be
satisfied may vary at runtime. To remain relevant after deployment, the
initial requirements specification ought to be continually updated to re-
flect such variation. Depending on the frequency of updates, this pa-
per separates the requirements engineering (RE) of AOSS onto the RE
for: individual services (Service RE), service coordination mechanisms
(Coordination RE), and quality parameters and constraints guiding ser-
vice composition (Client RE). To assist existing RE methodologies in
dealing with Client RE, the Dynamic Requirements Adaptation Method
(DRAM) is proposed. DRAM updates a requirements specification at
runtime to reflect change due to adaptability and openness.

1 Introduction

To specify requirements, the engineer describes the stimuli that the future system
may encounter in its operating environment and defines the system’s responses
according to the stakeholders’ expectations. The more potential stimuli she an-
ticipates and accounts for, the less likely a discrepancy between the expected
and observed behavior and quality of the system. Ensuring that the require-
ments specification is complete (e.g., [17]) becomes increasingly difficult as sys-
tems continue to gain in complexity and/or operate in changing conditions (e.g.,
[15, 10]). Adaptable and open service-oriented systems (AOSS) are one relevant
response to such complexity. They are open to permit a large pool of distinct
and competing services orignating from various service providers to participate.
AOSS are adaptable—i.e., an AOSS coordinates service provision by dynamically
selecting the participating services according to multiple quality criteria, so that
the users continually receive optimal results (e.g., [7, 8]).

A complete requirements specification for an AOSS would include the descrip-
tion of all relevant properties of the system’s operating environment, and of all
alternative system and environment behaviors. All services that may participate
would thus be entirely known at development time. Following any established

RE methodology (e.g., KAOS [4], Tropos [3]), such a specification would be con-
structed by moving from abstract stakeholder expectations towards a detailed
specification of the entire system’s behavior. As we explain in Section 2, applying
such an approach and arriving at the extensive specification of an AOSS is not
feasible. In response, this paper introduces concepts and techniques needed to
(1) determine how extensive the initial specification ought to be and what parts
thereof are to be updated at runtime to reflect system adaptation, and (2) know
how to perform such updates. The specification can then be used to continually
survey and validate system behavior. To enable (1), this paper separates the
requirements engineering (RE) of AOSS depending on the frequency at which
the requirements are to be updated (§2): RE executed for individual services
or small sets of services (Service RE), RE of mechanisms for coordinating the
interaction between services (Coordination RE), and RE of parameters guiding
the runtime operation of the coordination mechanisms (Client RE). To address
(2), this paper focuses on Client RE and introduces a method, called Dynamic
Requirements Adaptation Method (DRAM) for performing Client RE for AOSS
(§3). We close the paper with a discussion of related work (§4), and conclusions
and indications for future effort (§5).
Motivation. The proposal outlined in the remainder resulted from the diffi-
culties encountered in engineering requirements for an experimental AOSS, call
it TravelWeb, which allows users to search for and book flights, trains, hotels,
rental cars, or any combination thereof. Services which perform search and book-
ing originate from the various service providers that either represent the various
airlines and other companies, so that TravelWeb aggregates and provides an in-
terface to the user when moving through the offerings of the various providers.
Each provider can decide what options to offer to the user: e.g., in addition to
the basics, such as booking a seat on an airplane, some airlines may ask for
seating, entertainment, and food preferences, while others may further person-
alize the offering through additional options. We have studied elsewhere [7, 8]
the appropriate architecture and service composition algorithms for TravelWeb.
Here, we focus on the engineering of requirements for such systems.

2 Service, Coordination, and Client RE

To engineer the requirements for TravelWeb, a common RE methodology such
as Tropos [3] would start with early and late requirements analyses to better
understand the organizational setting, where dependencies between the service
providers, TravelWeb, and end users would be identified, along with the goals,
resources, and tasks of these various parties. Architectural design would ensue
to define the sub-systems and their interconnections in terms of data, control,
and other dependencies. Finally, detailed design would result in an extensive
behavioral specification of all system components. While other methodologies,
such as KAOS [4] involve a somewhat different approach, all move from high-
level requirements into detailed behavioral specifications. The discussion below,
however, concludes that such an approach is not satisfactory, because:

1) TravelWeb is open. Various hotels/airlines/rental companies may wish to of-
fer or retract their services. Characteristics of services that may participate in
TravelWeb at runtime is thus unknown at TravelWeb development time. Individ-
ual services are likely to be developed outside the TravelWeb development team,
before or during the operation of TravelWeb. It is thus impossible to proceed
as described for the entire TravelWeb—instead, it is more realistic to apply an
established RE methodology locally for each individual service, and separately
for the entire TravelWeb system, taking individual services as black boxes of
functionality (i.e., not knowing their internal architecture, detailed design, etc.).

2) Resources are distributed and the system adapts. All services may or may not
be available at all times. Moreover, individual services are often not sufficient
for satisfying user requests—that is, several services from distinct providers may
need to interact to provide the user with appropriate feedback. Adaptability in
the case of TravelWeb amounts to changing service compositions according to
service availability, a set of quality parameters, and constraints on service inputs
and outputs (see, [8] for details). RE specific to the coordination of services
carries distinct concerns from the RE of individual services.

3) Quality parameters vary. Quality (i.e., nonfunctional) parameters are used by
the service composer as criteria for comparing alternative services and service
compositions. Quality parameters are not all known at TravelWeb development
time, for different services can be advertised with different sets of quality pa-
rameters. As the sets of quality parameters to account for in composing services
change, (a) different sets of stakeholders’ nonfunctional expectations will be con-
cerned by various service compositions and (b) there may be quality parameters
that do not have corresponding expectations in the initial specification. Obser-
vation (a) entails that initial desired levels of expectations may not be achieved
at all times, making the initial specification idealistic. Deidealizing requirements
has been dealt through a probabilistic approach by Letier and van Lamsweerde
[11] where requirements are combined with probability of satisfaction estimates.
In an adaptable system, the probability values are expected to change favor-
ably over time (see, e.g., our experiments on service composition algorithms for
AOSS [7, 8]), so that updating the initial requirements specification to reflect the
changes seems appropriate if the specification is to remain relevant after system
deployment. Observation (b) relates to the difficulty in translating stakehold-
ers’ goals into a specification: as March observed in a noted paper [12], both
individual and organizational goals (which translate into requirements) tend to
suffer from problems of relevance, priority, clarity, coherence, and stability over
time, all of which relate to the variability, inconsistency, and imprecision, among
other, of stakeholder preferences. Instead of assuming that the initial set of ex-
pectations is complete, the specification can be updated at runtime to reflect
new system behaviors and to enable the stakeholders to modify requirements as
they learn about the system’s abilities and about their own expectations.

Having established that updates are needed, we turn to the question of what
to update. A requirements specification for an AOSS involves requirements that
are of different variability over time. Our experience with AOSS [7, 8] indicates

that a particular combination of service-oriented architecture and service coor-
dination algorithm enables adaptability, whereby the architecture and the al-
gorithm act as a cadre in which various requirements can be specified. Since
adaptability does not require change in the architecture and algorithm, require-
ments on these two remain reasonably stable. This observation, along with the
localization of service-specific RE to each individual service or small service
groups leads to a separation of AOSS RE effort as follows:
Service RE involves the engineering of requirements for an individual service,
or a set of strongly related services (e.g., those obtained by modularization of a
complex service). Depending on whether the service itself is adaptable, a classical
RE methodology such as Tropos or KAOS can be applied. As the coordination
mechanism selects individual services for fulfiling user requests, requirements
on an individual service do not change with changes in service requests (inputs
and/or outputs and constraints on these and quality parameters change with
variation in requests).
Coordination RE takes services as self-contained functionality and focuses on
the requirements for the coordination of services. In an AOSS, this typically in-
volves the definition of the architecture to enable openness, service interaction,
service selection, and service composition for providing more elaborate, compos-
ite services to fulfil user requests. As noted above, these requirements vary less
frequently than those elicited as a result of Client RE.
Client RE assumes a coordination mechanism is defined and is guided by con-
straints to obey, and quality parameters to optimize (e.g., QoS, execution time,
service reputation). This is the case after a service-oriented architecture is de-
fined in combination with an algorithm for service composition (see, e.g., [7,
8]). The aim at Client RE is to facilitate the specification of service requests at
runtime. This involves, among other expressing constraints on desired outputs,
quality criteria/parameters for evaluating the output and the way in which it is
produced. This can be performed by traditional RE methodologies. In addition,
Client RE ought to enable the definition of mechanisms for updating the service
requests specification according to change in AOSS’s behavior at runtime. The
set of constraints and quality parameters is likely to vary as new services ap-
pear and other become unavailable. Quality parameter values will vary as well,
as the system adapts to the availability of the various services and change in
stakeholders’ expectations.

3 Using DRAM at Client RE

We arrived above at the conclusion that there are two tasks to perform at Client
RE: (a) specification of requirements that result in service requests, and (b) the
definition of mechanisms for keeping these requirements current with behaviors
of the AOSS and degrees of quality it can achieve over the various quality pa-
rameters defined in the requirements. We focus now on Client RE, assume the
use of an established RE methodology for accomplishing (a), and introduce the
Dynamic Requirements Adaptation Method (DRAM) to perform (b). DRAM is

thus not a standalone RE methodology—it does not indicate, e.g., how to elicit
stakeholder expectations and convert these into precise requirements. Instead,
DRAM integrates concepts and techniques for defining mappings between frag-
ments of the requirements specification produced by an existing RE methodol-
ogy and elements defining a service request (SReq). Mapping requirements onto
SReqs aims to ensure that the stakeholders’ expectations are translated into
constraints and quality parameters understood by the AOSS. Mapping in the
other direction—from SReqs onto requirements—allows the initial (also: static)
requirements specification to be updated to reflect runtime changes in the sys-
tem due to adaptability and openness. The specification obtained by applying
DRAM on the initial, static requirements specification is referred to as the dy-
namic requirements specification.

Definition 1. Dynamic requirements specification S is 〈R,R,Q,P,U ,A〉,
where: R is the static requirements specification (Def.2); R the set of ser-
vice requirements (Def.3); Q the set of quality parameters (Def.4); P the
preferences specification (Def.5); U the set of update rules (Def.6); and A
the argument repository (Def.7).

The aim with DRAM is to build the dynamic requirements specification.
Members of R are specifications of nonfunctional and functional requirements,
taking the form of, e.g., goals, softgoals, tasks, resources, agents, dependen-
cies, scenarios, or other, depending on the RE methodology being used. Service
requests submitted at runtime express these requirements in a format under-
standable to service composers in the AOSS. Nonfunctional requirements from
R are mapped onto elements of Q and P, whereas functional requirements from
R onto service request constraints grouped in R. As equivalence between frag-
ments of R and R,Q,P can seldom be claimed, a less demanding binary relation
is introduced: the justified correspondence “,” between two elements in S indi-
cates that there is a justification for believing that the two elements correspond
in the given AOSS, at least until a defeating argument is found which breaks
the justification. In other words, the justified correspondence establishes a map-
ping between instances of concepts and relationships in the language in which
members of R are written and the language in which members of R,Q,P are
written. The preferences specification P contains information needed to manage
conflict and subsequent negotiation over quality parameters that cannot be sat-
isfied simultaneously to desired levels. Update rules serve to continually change
the contents of R according to system changes at runtime. Finally, the argument
repository A contains knowledge, arguments, and justifications used to construct
justified correspondences and at other places in S, as explained below.
S is continually updated to reflect change in how the service requests are

fulfilled. Updates are performed with update rules: an update rule will automat-
ically (or with limited human involvement) change the R according to the quality
parameters, their values, and the constraints on inputs and outputs character-
izing the services composed at runtime to satisfy service requests. An update
rule can thus be understood as a mapping between fragments of R and those of

R,Q,P. Consequently, an update rule is derived from a justified correspondence.
It is according to the constraints on inputs/outputs and quality parameter values
observed at runtime that fragments of requirements will be added or removed
to R. Update rules work both ways, i.e., change in R is mapped onto service re-
quests, and the properties of services participating in compositions are mapped
onto fragments of R.

Building fully automatic update rules is difficult for it depends on the pre-
cision of the syntax and semantics of languages used at both ends, i.e., the
specification language of the RE methodology which produces R and the speci-
fication language employed to specify input/output constraints on services and
quality parameters. Due to a lack of agreement on precise conceptualizations of
key RE concepts (e.g., [17]), DRAM makes no assumptions about the languages
employed for writing R, R, and Q. Hence the assumption that languages at
both ends are ill-defined, and the subsequent choice of establishing a “justified”
correspondence (i.e., a defeasible relation) between specification fragments. An
unfortunate consequence is that update rules in many cases cannot be estab-
lished automatically—a repository of update rules is built during testing and
at runtime. S integrates the necessary means for constructing update rules: to
build justified correspondences between elements of R and R,Q,P, arguments
are built and placed in the argument repository A. Update rules are automati-
cally extracted from justified correspondences. As competing services will offer
different sets of and values of quality parameters at service delivery, and as
not all will be always available, trade-offs performed by the AOSS need to be
appropriately mapped to R. Moreover, stakeholders may need to negotiate the
quality parameters and their values. P performs the latter two roles. DRAM
proceeds as follows in building the dynamic requirements specification (concepts
and techniques referred to below are explained in the remainder).

Building the dynamic requirements specification with DRAM

1. Starting from the static requirements specification R (Def.2), select a fragment
r ∈ R of that specification that has not been converted into a fragment in R
(Def.3), Q (Def.4), and/or P (Def.5).

2. Determine the service requirement and/or quality parameter information that can
be extracted from r as follows:
(a) If r is a functional requirement (i.e., it specifies a behavior to perform), focus is

on building a justified correspondence (see, Def.6 and Technique 1) between r
and elements of service requirements. Consider, e.g., the following requirement:
Each user of TravelWeb expects a list of available flights for a destination to
be shown within 5 seconds after submitting the departure and destination city
and travel dates.

available(depC, depD, arrC, arrD, flight)∧correctFormat(depC, depD, arrC, arrD)⇒
�5sshown(searchResults, flight)

Starting from the above functional requirement:
i. Identify the various pieces of data that are to be used (in the exam-

ple: depC, depD, arrC, arrD, flight) and those that are to be produced
(searchResults) according to the requirement.

ii. Find services that take the used data as input and give produced data at
output (e.g., FlightSearch Serv, s.t. {depC, depD, arrC, arrD, flight} ⊆
I ∧ searchResults ∈ O).

iii. Determine whether the service requirements available on inputs justifi-
ably corresponds to the conditions on input data in the requirement, and
perform the same for output data (i.e., check if there is a justified cor-
respondence between input/output service requirements and conditions
in the relevant requirements in R—i.e., use Def.6 and Technique 1). If
constraints do not correspond (justified correspondence does not apply),
map the conditions from the requirement in R into constraints on inputs
and/or outputs, and write them down as service requirements. If there
is no single service that satisfies the requirement (i.e., step 2(a)i above
fails), refine the requirement (i.e., brake it down into and replace with
more detailed requirements)—to refine, apply techniques provided in the
RE methodology.

iv. Use step 2b to identify the quality parameters and preferences related to
the obtained service requirement.

(b) If r is a nonfunctional requirement (i.e., describes how some behavior is to be
performed, e.g., by optimizing a criterion such as delay, security, safety, and
so on), the following approach is useful:

i. Find quality parameters (Def.4) that describe the quality at which the
inputs and outputs mentioned in a particular service requirement are being
used and produced. In the example cited in the DRAM process, the delay
between the moment input data is available and the moment it is displayed
to the user can be associated to a quality parameter which measures the
said time period.

ii. Following Def.4, identify the various descriptive elements for each quality
parameter. Use R as a source for the name, target and threshold value, and
relevant stakeholders. If, e.g., Tropos is employed to produce R, softgoals
provide an indication for the definition of quality parameters.

iii. For each quality parameter that has been defined, specify priority and
preferences. Initial preferences data for trade-offs comes from test runs.

3. Write down the obtained r ∈ R, q ∈ Q, and/or p ∈ P information, along with
arguments and justifications used in mapping r into r and/or q. Each justified
correspondence obtained by performing the step 2. above is written down as an
update rule u ∈ U .

4. Verify that the new arguments added to A do not defeat justifications already in
A; revise the old justifications if needed.

Definition 2. The static requirements specification R is the high-level re-
quirements specification obtained during RE before the system is in operation.

R is obtained by applying a RE methodology, such as, e.g., KAOS [4] or Tro-
pos [3]. The meaning of “high-level” in Def.2 varies accross RE methodologies:
if a goal-oriented RE methodology is employed, R must contain the goals of the
system down to the operational level, so that detailed behavioral specification in
terms of, e.g., state machines, is not needed. If, e.g., KAOS is used, the engineer
need not move further than the specification of goals and concerned objects, that
is, can stop before operationalizing goals into constraints. If Tropos is used, the
engineer stops before architectural design, having performed late requirements
analysis and, ideally, formal specification of the functional goals.

Example 1. When a RE methodology with a specification language grounded
temporal first-order logic is used1, the following requirement r ∈ R for TravelWeb
states that all options that a service may be offering to the user should be visible
to the first time user:

1stOpt ≡ (hasOptions(servID) ∧ firstTimeUser(servID, userID)
⇒ �1sshowOptions(all, servID, userID))

Definition 3. A service requirement r ∈ R is a constraint on service inputs
or outputs that appears in at least one service request and there is a unique r ∈ R
such that there is a justified correspondence between it and r.

Example 2. Any service that visualizes to the TravelWeb user the options that
other services offer when booking obeys the following service requirement:

r = (input:servID 6∈ userID.visited ∧ servID.options 6= ∅; output:thisService.show = servID.options)

Definition 4. A quality parameter q ∈ Q is a metric expressing constraints
on how the system (is expected to) performs. q = 〈Name,Type,Target,Threshold,
Current, Stakeholder〉, where Name is the unique name for the metric; Type indi-
cates the type of the metric; Target gives a unique or a set of desired values for
the variable; Threshold carries the worst acceptable values; Current contains the
current value or average value over some period of system operation; and Stake-

holder carries names of the stakeholders that agree on the various values given
for the variable.

Example 3. The following quality parameters can be defined on the service from
Example 2:

q1 = 〈ShowDelay,Ratio, 500ms, 1s, 780ms,MaintenanceTeam〉
q2 = 〈OptionsPerScreen,Ratio, {3,4,5}, 7, (all),UsabilityTeam〉
q3 = 〈OptionsSafety,Nominal,High,Med, Low,MaintenanceTeam〉
q4 = 〈BlockedOptions,Ratio, 0, (≥ 1), 0,MaintenanceTeam〉

As quality parameters usually cannot be satisfied to the ideal extent simulta-
neously, the preference specification contains information on priority and positive
or negative interaction relationships between quality parameters. Prioritization
assists when negotiating trade-offs, while interactions indicate trade-off direc-
tions between parameters.

Definition 5. The preferences specification is the tuple P = 〈�,P�,P±〉.
“�” is a priority relation over quality parameters. The set P� contains partial
priority orderings, specified as (qi � qj , Stakeholder) ∈ P� where qi carries higher
priority than qj, and Stakeholder contains the names of the stakeholders agreeing
on the given preference relation. Higher priority indicates that a trade-off between
1

Assuming, for simplicity, a linear discrete time structure, one evaluates the formula for a given
history (i.e., sequence of global system states) and at a certain time point. The usual operators
are used: for a history H and time points i, j, (H, i) |= ◦φ iff (H,next(i)) |= φ; (H, i) |= �φ iff
∃j > i, (H, j) |= φ; (H, i) |= �φ iff ∀j ≥ i, (H, j) |= φ. Mirror operators for the past can be added
in a straightforward manner. Operators for eventually � and always � can be decorated with
duration constraints, e.g., �≤5sφ indicates that φ is to hold some time in the future but not after
5 seconds. To avoid confusion, note that → stands for implication, while φ ⇒ ψ is equivalent to
�(φ→ ψ). For further details, see, e.g., [16].

the two quality parameters will favor the parameter with higher priority. The set
P± contains interactions. An interaction indicates that a given variation of the
value of a quality parameter results in a variation of the value of another quality
parameter. An interaction is denoted (q1

b1⇒b2←→ q2)@φ. q1
b1⇒b2←→ q2 indicates that

changing the value of the quality parameter q1 by or to b1 necessarily leads the
value of the parameter q2 to change for or to b2. As the interaction may only
apply when particular conditions hold, an optional non-empty condition φ can
be added to indicate when the interaction applies. The condition is written in
the same language as service requirements. When the relationship between the
values of two quality parameters can be described with a function, we give that
functional relationship instead of b1 ⇒ b2.

Example 4. Starting from the quality parameters in Ex.3, the following is a
fragment of the preferences specification:

p1 =
�
OptionsPerScreen

+1⇒+60ms←→ ShowDelay
�

@(OptionsPerScreen > 4)

p1 indicates that increasing the number of options per screen by 1 increases the
delay to show options to the user by 60ms, this only if the number of options to
show is above 4.

Definition 6. A justified correspondence exists between φ ∈ R and ψ ∈
R ∪Q ∪ P, i.e., φ , ψ iff there is a justification 〈P, φ , ψ〉.

Recall from the above that the justified correspondence is a form of mapping
in which very few assumptions are made on the precision and formality of the
languages being mapped. This entails the usual difficulties (as those encountered
in ontology mapping, see, e.g., [9]) regarding conversion automation and the
defeasibility of the constructed mappings, making DRAM somewhat elaborate
to apply in its current form. Defeasibility does, however, carry the benefit of
flexibility in building and revising mappings.

Definition 7. A justification 〈P, c〉 is an argument that remains undefeated
after the justification process.2

2
Some background [14]: Let A a set of agents (e.g., stakeholders) and the first-order language L
defined as usual. Each agent a ∈ A is associated to a set of first-order formulaeKa which represent
knowledge taken at face value about the universe of discourse, and ∆a which contains defeasible
rules to represent knowledge which can be revised. Let K ≡

S
a∈AKa, and ∆ ≡

S
a∈A∆a.

“|∼” is called the defeasible consequence and is defined as follows. Define Φ = {φ1, . . . , φn}
such that for any φi ∈ Φ, φi ∈ K ∪ ∆↓. A formula φ is a defeasible consequence of Φ (i.e.,
Φ |∼ φ) if and only if there exists a sequence B1, . . . , Bm such that φ = Bm, and, for each
Bi ∈ {B1, . . . , Bm}, either Bi is an axiom of L, or Bi is in Φ, or Bi is a direct consequence
of the preceding members of the sequence using modus ponens or instantiation of a universally
quantified sentence. An argument 〈P, c〉 is a set of consistent premises P supporting a conclusion
c. The language in which the premises and the conclusion are written is enriched with the binary
relation ↪→. The relation ↪→ between formulae α and β is understood to express that “reasons
to believe in the antecedent α provide reasons to believe in the consequent β”. In short, α ↪→ β
reads “α is reason for β” (see, [14] for details). Formally then, P is an argument for c, denoted
〈P, c〉, iff: (1) K ∪ P |∼ c (K and P derive c); (2) K ∪ P 6` ⊥ (K and P are consistent); and (3)
6 ∃P ′ ⊂ P,K ∪ P ′ |∼ c (P is minimal for K).

Up to this point, the concepts needed in DRAM have been introduced. The
remainder of this section describes the techniques in DRAM that use the given
concepts in the aim of constructing the dynamic requirements specification.

Technique 1. The justification process [14] consists of recursively defining and
labeling a dialectical tree T 〈P, c〉 as follows:
1. A single node containing the argument 〈P, c〉 with no defeaters is by itself a
dialectical tree for 〈P, c〉. This node is also the root of the tree.
2. Suppose that 〈P1, c1〉 , . . . , 〈Pn, cn〉 each defeats3 〈P, c〉. Then the dialectical
tree T 〈P, c〉 for 〈P, c〉 is built by placing 〈P, c〉 at the root of the tree and by
making this node the parent node of roots of dialectical trees rooted respectively
in 〈P1, c1〉 , . . . , 〈Pn, cn〉.
3. When the tree has been constructed to a satisfactory extent by recursive
application of steps 1) and 2) above, label the leaves of the tree undefeated (U).
For any inner node, label it undefeated if and only if every child of that node is
a defeated (D) node. An inner node will be a defeated node if and only if it has
at least one U node as a child. Do step 4 below after the entire dialectical tree
is labeled.
4. 〈P, c〉 is a justification (or, P justifies c) iff the node 〈P, c〉 is labelled U .

Example 5. Fig.1 contains the dialectical tree for the justified correspondence
1stOpt , r, where r is from Ex.1 and r from Ex.2. To simplify the presentation
of the example, we have used both formal and natural language in arguing. More
importantly, notice that the correspondence 1stOpt , r is unjustifed, as it is de-
feated by an undefeated argument containing information on a quality parameter
and a fragment of the preferences specification. A justified correspondence such
as, e.g., firstTimeUser(servID, userID) , servID 6∈ userID.visited, becomes an
update rule, i.e., (firstTimeUser(servID, userID) , servID 6∈ userID.visited) ∈
U . Having established that justified correspondence, the service requirement is
taken to correspond to the given initial requirement until the justified corre-
spondence is defeated. Elements of the argument repository correspond to the
argument structure shown in Fig.1.

4 Related Work

Engineering requirements and subsequently addressing completeness concerns
for AOSS has only recently started to receive attention in RE research. Berry
and colleagues [1] argue in a note that, while much effort is being placed in
enabling adaptive behavior, few have dealt with how to ensure correctness of
software before, during, and after adaptation, that is, at the RE level. They
recognize that RE for such systems is not limited to the initial steps of the sys-
tem development process, but is likely to continue in some form over the entire
3

Roughly (for a precise definition, see [14]) the argument 〈P1, c1〉 defeats at c an argument 〈P2, c2〉
if the conclusion of a subargument 〈P, c〉 of 〈P2, c2〉 contradicts 〈P1, c1〉 and 〈P1, c1〉 is more
specific (roughly, contains more information) than the subargument of 〈P2, c2〉.

Fig. 1. Output of the justification process related to Examples 1 and 2.

lifecycle of the system. Zhang and Cheng [19] suggest a model-driven process for
adaptive software; they represent programs as state machines and define adap-
tive behaviors usually encountered in adaptable systems as transitions between
distinct state machines, each giving a different behavior to the system. Being sit-
uated more closely to the design phase of development than to RE, Zhang and
Cheng’s process has been related [2] to the KAOS RE methodology by using
A-LTL instead of temporal logic employed usually in KAOS. In the extended
KAOS, a requirement on adaptation behavior amounts to a goal refined into
two sequentially ordered goals, whereby the first in the sequence specifies the
conditions holding in the state of the system before adaptation while the second
goal gives those to hold in the state after adaptation. This paper differs in terms
of concerns being addressed and the response thereto. The suggested separation
onto Service, Coordination, and Client RE for AOSS usefully delimits the con-
cerns and focus when dealing with AOSS. The notion of dynamic requirements
specification, along with the associated concepts and techniques is novel with
regards to the cited research.

5 Conclusions and Future Work

This paper presents one approach to addressing the difficulties in the RE of
AOSS. We argued that the RE of AOSS involves the specification of requirements
that may vary at runtime. We consequently identified the most variable class of
AOSS requirements and proposed DRAM, a method for specifying these within
dynamic requirements specifications. The method has the benefit that it can
be combined to any RE methodology. Its principal limitation at this time is
the lack of automated means for defining or facilitating the definition of update
rules. Automation of the DRAM process by reusing results in defeasible logic
programming is the focus of current work.

References

1. D. M. Berry, B. H. Cheng, J. Zhang. The four levels of requirements engineering for
and in dynamic adaptive systems. REFSQ’05.

2. G. Brown, B. H. C. Cheng, H. Goldsby, J. Zhang. Goal-oriented Specification of
Adaptation Semantics in Adaptive Systems. SEAMS@ICSE’06.

3. J. Castro, M. Kolp, J. Mylopoulos. Towards requirements-driven information sys-
tems engineering: the Tropos project. Info. Sys., 27(6), 2002.

4. A. Dardenne, A. van Lamsweerde, S. Fickas. Goal-directed requirements acquisition.
Sci. Comp. Progr., 20, 1993.

5. N. R. Jennings. On Agent-Based Software Engineering. Artif. Int., 117, 2000.
6. I. J. Jureta, S. Faulkner, P.-Y. Schobbens. Justifying Goal Models. RE’06.
7. I. J. Jureta, S. Faulkner, Y. Achbany, M. Saerens. Dynamic Task Allocation within

an Open Service-Oriented MAS Architecture. AAMAS’07. To appear.
8. I. J. Jureta, S. Faulkner, Y. Achbany, M. Searens. Dynamic Web Service Composi-

tion within a Service-Oriented Architecture. ICWS’07. To appear.
9. Y. Kalfoglou, M. Schorlemmer. Ontology Mapping: The State of the Art. Dagstuhl

Seminar Proceedings, 2005.
10. J. O. Kephart, D. M. Chess. The vision of autonomic computing. Computer,

36(1):41–52, 2003.
11. E. Letier, A. van Lamsweerde. Reasoning about partial goal satisfaction for re-

quirements and design engineering. ACM Sigsoft Softw. Eng. Notes 29(6), 2004.
12. J. March. Bounded Rationality, Ambiguity, and the Engineering of Choice. The

Bell J. Econonomics, 9(2), 1978.
13. M. P. Papazoglou, D. Georgakopoulos. Service-Oriented Computing. Comm. ACM,

46(10), 2003.
14. G. R. Simari, R. P. Loui. A mathematical treatment of defeasible reasoning and

its implementation, Artif. Int., 53, 1992.
15. D. Tennenhouse. Proactive Computing. Comm. ACM, 42(5), 2000.
16. A. van Lamsweerde, E. Letier. Handling Obstacles in Goal-Oriented Requirements

Engineering. IEEE Trans. Softw. Eng., 26(10), 2000.
17. A. van Lamsweerde. Goal-Oriented Requirements Engineering: A Guided Tour.

RE’01.
18. J. Zhang, B. H. C. Cheng. Specifying adaptation semantics. WADS’05.
19. J. Zhang, B. H. C. Cheng. Model-Based Development of Dynamically Adaptive

Software. ICSE’06.

