Multitasking JILFERY

Tasks (or computing processes) are the smallest entities and fundamental elements of
asynchronous programming.

AR (B LITEETOER)E, FRATOVSIIVTDERANLGZERTHY, RINDIVTATA
THA.

They represent the execution of programs in a computing system during the lifetime of the
processes.
ZholE, TAERDFEFOHRTAVELA—FVRATLIZEWNT, TAVSLOETICIHET .

Such a lifetime begins with the registration instant of a process and ends with its
cancellation.
ZD&LSGFmIE, DOOOEDOTALRDEFENSIEFEY, ZELTTAERADRYEL THEH L,

Thus, the computing process exists not only during the actual processing an a functional
unit of a computing system, but also before the start of processing and during the planned
and forced waiting periods.

TRz, avE1—T42 5 TaERIE,
EEDIAVEA—TAV T AT LOMEERMFNIELTLSMEZ(FTHLS,

TOERDHEMS, FHEIN, ZTLTRTISh - HMOMLEET S.

Tasks are programmed using adequate programming methods, languages and tools.
RO, EUETOTIIT OAERERE, V—ILEFESZLICE>TTAYT S LS -

The basic requirement for hard real-time tasks is|that it must be possible to assess their
maximum execution time, called Worst-Case Execution Time (WCET).
N—RI)TWNEAL LIGRAR IS HERMGERIE, | WCET EEENLHENLDE2RIDEX
ETRHEZFHET 52D, ATRETRITIEESAL.

A precondition, in turn, for this is that the behavior of the execution platform is deterministic
and predictable.

RYRST, ChICTHT DRTHREHI,

EITTIVNIA—LDORDBELNDNRESNTEY, FAAETHIZLETHD.

More details about WCET analysis will be given Section 4.2.
WCET 29 2KV ST IL, 4.2 ETRY.

In the following sections, first the concepts of task and multitasking will be dealt with.
BCETIE, RYMITHRVETILF IR DB ZERYRS.

Then, the ultimate guideline to design architectures for embedded systems — schedulability
— will be explored, and a feasible scheduling policy presented.

ZOF, HARAHASATLIZHT BT —FTIFvEHATH-ODOERNGIEH —R7Pa
—ILATREM— MRESH, ZLT, ETARELGR 72—V TRV BRRENSZSS.

K AT OASEYT4 : TRTDERINTYIRSAVEFHENHEBZRTr D 1—)L
(BEL-FREBZINSNBER T I RERFZN(TYRSAV) ETOBEMZEI T YRS AR)

Finally, the principles of inter-task synchronisation will be explained.
RRIC, 2RVBORBADRAIA, BRPASNLEES.

2.1 Task Management Systems 2RI EEIXT L

Execution of tasks is administered by system programs.
RARYDETIE, YATLDTATSLIZE>TEEINS.

Since there are (except in very specific applications) never enough processing units |that
each task could exclusively be mapped on one of its own,|tasks must be arranged or
scheduled in a sequence for execution.

TNETNDARYE, BMHMICARIVBETIVE TSNS |+ EBEBE TIHRLTELD T,
BRDIE, ETICHLTHAIEETERBEINGD, R Pa—IILENGTNELESRN.

Sometimes, tasks can be scheduled a priori during design time.
EEEE, BRI, BREREPICEBRIICR 71— ILENETENTES.

This is only possible if the system behavior is completely known in advance like, e.g., for a
washing machine, whose tasks filling with water, heating, turning the drum either way,
draining water, etc. follow sequences that are always the same.

NlE, PRATLDIRDEND, EEBOFIDIIITTERICHL>THLON TSI EIZE>TD
HAREETED.

GBI AEIEDARYIE, KTULWIELZL, B, EAELLIZERSLZEEIL, KER
gpEEWST=, BIZCRICIBREIZHES.

Such systems are caked static.
FOEIGIRTLIE, FHEEEINDS.

Here, the execution schedules of parallel tasks can be carefully planned, optimized, and
verified off-line during design time.

CCT, HITRRVDREITARA 7V a—)LIE, REREFRICARICEHESH, SEltsh, £LTE
FIZHERESN BT EMNTES.

Consequently, this is the safest way to implement embedded applications.
ZTOFRELT, INIEMARAT T)r—2a 0 RETEHODRLLELFETHS.

Most systems, however, are dynamic:
LAOLEDNSKRED DR TLIE, BINTHDS. HELRLIE,

at least some of the events requiring service by tasks are known in advance with their
parameters, but their occurrence instants are sporadic and asynchronous to other control
system processings.

PigkEd, FRYIZEKD Y —ERZDBBELTDHNLDODDARUNE, ZDARURD)INTA—4E
—fEICERIZHONTLNS.

LWL, ENDAANUM)DREEDERIL, BFEMT, thOHE AT LOREIZFERATHS.

In such cases, tasks need to be scheduled at run-time.
ZTDEOIBEFITIE, FRVIEEFTHMICRT D 2—ILEN2DLELHS.

These systems are more flexible, but their design is also much more challenging.
TNODVRAT LXK, KURBRENHEH, TNODEELIEEINICHETHD.

In this chapter we shall deal with dynamic or mixed systems.
COETH, BREFBHRATLERFEEDRATLERIANEZTESS.

There are different approaches to how mixtures of static and dynamic tasks can be
executed.
EDLSITHHFIR I EBHRR I DREMDEITINDIENTEEINNDELGLIYHA DT

RS

Two representative examples are the cyclic executive approach and asynchronous
multitasking.

2 DOEBLELGDHHIE, BENGRIT(AHEILIETS)7I0—F&, FRHATILFEIRITH
.

2.1.1 Cyclic Executive RHAKLZEIT

The simpler approach of two can accommodate both statically scheduled periodic tasks and
asynchronous sporadic tasks, although for the latter it can only be used with limitations.

2 DOEBEMETIO—FIE, #NICEHRNLEERNIRIEFERBALHFENIRIDELLLE
5 HIEMNHERKD.

BEDGE E—OFIREELZZEEICANTHERTHIIEAHEET.

The approach is based on periodic execution of a schedule, part of which is determined
statically and the other part dynamically.

F7A—FIL, AT 21—)L ORHMLEETICEDNTNS.

R7roa—LDO—EIF, FHHIZRESH, ELTEDMDE D FBIMIITRESNS.

The start of each cycle is triggered by a timer interrupt.
TNENORPDRIRIE, FATENVIAAICE>TEIERBIIND.

Periodic tasks may have different requirements and need to be executed within their
specified periods.
RHAKARY(E, BIGLEREFDOFAREELNHY, HREDHRATEITEINILENHS.

Further, it is assumed that the tasks are completely independent of each other.
ZDLE, ARIDREEICENIHITHAZEFRELT=.

The periodic tasks are assigned to be run in cycles according to their requirements.
BESRV(E, BRI DERIZHE->TEAEMIZRITSNSEZRYHTONS.

The longest cycle is called the major cycle, consisting of a number of major cycles of
different durations.
SEROBHIE, Bo58GHHOTEGRYRLOMTHERSNDSIDT, TRTREFEENS.

All process periods must be integer multiples of the minor cycle.
FTRATOTORDOEAM I, IMEROZEHE TRITNIEESMEL.

It is possible to include asynchronously arriving sporadic tasks into this scheme:
FERBAMICCOBR(RT—7)IC, BT IRRENIRIEZENHEHENFAIRETHS.

they can be executed in the slack time between the termination of the last periodic task in a
cycle and the start of the next cycle.

ENOEEMEIRD)E, BRICEVWT—BERROBHNIR IO T E, ROBHDIEBEFEYD
FORDGEB TETINSGZENHES.

This also means that the execution time of a sporadic task is limited to this slack; if it is
longer, an overrun situation occurs.

hIE, BBEHEARIOETRENZOEE(RIEEM)ICBRONEGZELEKRT S.
LLBBHIRDOETHBEANRINIE, A—R—F0 DIRENFKET S.

A major use of such sporadic tasks is to report exceptions.

TDFILBHAMZRIDELFRIL, FISNERETHETHD.

An example of a schedule generated by a cyclic executive for periodic tasks A, B, C and D
with periods 1, 2, 2 and 4, respectively, and two sporadic tasks E1 and E2 is shown in Figure
2.1.

Rroa—LoBlE, TnEh 1,224 DHARTREALAKS RS AB,C,D IZHL TRABHETIZE
STHEYHLTE.

ZLT, BMEMARY EL EE2 (&, B 2.1 IZRLT=.

A very simple implementation of the cyclic executive approach is sketched by pseudo-code
in Figure 2.2.

FHMET7IO—FOLTHLEMEEREL, B 2212855 U FIC&>THREZRINT
(AV-N

It is based on an array of task control blocks.
TN(ELIO—F)E, {CSADFRIFHEHTOVIIZEDINTINS.
X AZRVFIHTAYY:0S DA—RIIZEVWTHIET ETOCR(BRY)DREERT T—2HEE

For each task there are parameters: duty cycle, cycle control, and start address.
TNTNDEARIIZRL, NFA—INFET S.
Yhabhb, BEYAUIL, BRHEE, RIET7RLATHS.

Another array mentions signals and addresses of sporadic tasks.
ZDMDESIF, BMEHIRIDTRLRAEESTIZOVTERT S.

It is assumed that the worst-case execution times are shorter than the smallest slack
between the end of the last periodic task and the beginning of the next cycle, which can be
calculated at design time.

RaDZEDRITRRES, —BFEXEOAHAHNIRIDERTLE,

AR TR RITASENHRLIRDEHDIBFTYDED,
ETHNELER LY ENCEEEEL TS,

Further, it is assumed that sporadic tasks are rare;

oI, BBEHFRVEHTHHIEERESIN TS,

if there are more in a queue they are executed in first-in-first-out (FIFO) manner.
F1—RNITERFEETHEES BMREHIRIIE, TJ7—AM U T7—RANT IMFIFO) AR TELT
=Nnb.

Finally, there is a check at the beginning whether it came to an overload in the preceding
cycle;

BEIC, BIOBBIZENT, BEFIZHESENEIHEZEOIZERELHS.

that may happen if the worst-case execution times of tasks were exceeded.
BREIL FRVDREDGZEDETEHBN LESIGEICEISAREELH 5.

(Figure 2.1 and 2.2 exist here.)

It must be noted that the “tasks” here are actually only procedure calls.
CCTULSIMERY 1EF, REMICEFHREFEVHLTHALLETICBETILELNHYFT.

No usual tasking operations can be performed; their static schedule assures them exclusive
execution slots.
BEOIRVBEIL, RLUTEITEINHIENGL.

BGRTUa—IUE, ENoDHMMARTAOVNERIET .

Thus, there is no interdependency, and synchronization with its possible dangers is not

necessary.

ETNHIS, HEKRFELSGL, ZAoNLBRMELDRASBDEL.

Execution of the tasks is temporally predictable in full.
AR DETIE, BEIC—EHHIZCTFEFRETHS.

If it is difficult to construct a feasible schedule off-line due to high system load, different
optimization methods can be utilised.
VATLDEERISERT AERN ORTERRLGR TS 1—ILE

BEILEHARBGISES, EROREILAEEFRTHEAHES.

Once a schedule is composed, no further run-time schedulability tests are needs for periodic
tasks.

—ERTTa—LIEERSh,

FY—BOETHBRTD2—)LD TAME, IRUTEBMA2R V(2L TRHETIEAL.

In the most simple, although not very rare cases, the cyclic executive reduces to periodic
invocation of a single task.
ETEMABEHITIIES, RLEMT, AHANGRETE E—2XJDORRNERZRST .

Simple programmable logic controllers (PLC) operate in this manner, first acquiring sensor
inputs, then execution control functions, and finally causing process actuations.
BEfarngs<iLadyyarbo—3&, COARXTEETS.
RAICRELTVS U YHAANL, TORBRITAVIA—3ABEL, HERICFIEEILTLS
TOEXHMEENT S.

*FAYS5<T)Adysasba—3 - YL—RBORBEBLLTHARBSINFHIEHEE

A large number of successful implementations of process control application using the cyclic
executive can be found.

REMLZETEFRALTWS, RUOEMLE-TaERar a— L7 T Ur—i 3> NRE,
ROT5IEMNHE%RS.

Lawson [76], for instance, has presented a philosophy, paradigm and model called

Cy-Clone (Clone of Cyclic Paradigm), which aims to remove the drawbacks of the cyclic
approach while providing deterministic properties for time- and safety-critical systems.
Bl Z X, O—VY2IE, Cy-Clone(AEA/SSHF A LYA—2) M (ENDNTFTALEETILERKE
HERRL-.

Cy-Clone (X, |24 LIV TAhIWD AT LE LV E—TT40)TA4HIVD AT LIZK T R E R
BIONTAERELTWS | BN 7 TO—FORAZRMYRCIEEBMELTWLS.

In his cyclic approach, the period should be long enough to allow for all processing, but
sufficiently short to ensure the stability of control.

BORPHTIO—FTIE, HRIETRTOTOCREZZEICANS O+ R BHIBEN
HED, HEHDOLEMEEZRIAT H=DIC+RETIBELHS.

To adapt to dynamic situations, the method can provide mode shifts, where the period varies
in a controlled manner during execution.

ERIRIRISEIS T 51012, TOHEE, T—FOERZIRET L EMNHEKS.
ZOHRIEETOMRE, fl#ESh-AXTEILTS.

As Lawson points out, the Cy-Clone approach is not claimed to be the best solution for all
real-time systems, but was established on the basis “If the shoe fits, wear it”.

A—Y 8T 5L5IZ, Cy-Clone 77O0—F (&, TR TOERBEATLAIZHTHREERT
HHEETRINTOGWA, TRVBHECHAHDHELIE, WHESW JEWSITEEZEMEL T
Iisht-.

In the early 1980s it was employed in a control system of the Swedish National Railway to
assist train engineers in following the speed limits along the railway system in Sweden.
1980 F£RAEH, ETN(E, RVI—TUITETHHBEL AT LITRIREFRLUTT, #hEanTy
DZTEXETEHEOIZ, AVI—TUOERHBEDHE AT LICEWWTERASNT-.

In 2000, Lawson reported [77] that it was still working (after a non-significant re-design in
1992), but now in high-speed trains!

2000 €[, A—Y2IE, Fh(Cy-Clone 7 7O—F)A3(1992 F(CEEKRLFEER)RE(ZEL
TWB[771ZHRELT=.

LHL, BEZTNIESEDIEDHRTEHULTLS.

2.1.2 Asynchronous Multitasking JERIA<ILFRRY

Although convenient and safe, the above approach cannot be used for dynamic systems,
where all r most tasks are asynchronous.

FLNHRETHSH, LREOT7TO—FIE, BMES AT LICHLTIEFIATHIEAHE KL
L.

In such cases, real asynchronous multitasking needs to be employed.
ZD&IEHEIC, EEOERBATILFIRINERASNILELHD.

In contrast to the static cyclic executive, timeliness and simultaneity are to be provided
dynamically.
BRI BRI ET ORI, B IE RN, BIMICRBENERETHS.

The dynamic load behavior requires scheduling problems to be solved with an adequate
strategy.
BMARERE, BULARTRREINIRER 71— T DORBEEEKRT 5.

The demand for simultaneity implies pre-emptability of tasks:
FRFEISH T AFREE, FRIDERYZERTT 5.

a running task may be pre-empted and put back into the waiting state if another task needs
to be executed according to the scheduling policy.

FThaht, BITLTWAERVIE, 5T HIENTES. ZLT, thDIRID, RgPa—1)2T
AEIZEOTHRITI RSV EDHHEE, (RITLTLDFRVIL)FHIREICRS.

However, as a consequence this leads to synchronization requirements.
LOLEDLS, ERELTINIE, REIOBEEHIZDOEMNS.

Context-switching, i.e., swapping the tasks that are executing on a processor, starts
with saving the context (i.e., the state consisting of program counter, local variables, and
other internal task information) of the executing task to storage in order to allow its eventual
resumption when it is rescheduled to run.

AVTIXRRDYVEZR, T4b5, TAEy Y ETEFTTIIRIZANEZDHLLT,
ERITITAOICRTDa—LERESNT-F, RWUGKEREEZETHHIC, ARL—DZE
TAHRDIARIDAVTHFRRANTEhE, TATS LAV ATHEBSINTLSIKE, O—HILEH,
ZLTEDMDREBDER I DIER)EZHERT HENDIRFED.

This storage is often called Task Control Block, (TCB) and also includes other information
about tasks, e.g., their full and remaining execution time, deadlines, resource contention,
etc.

CORAMN—DIE, KIEFARIaMO—LTOVIEEENRTEY,

BIZIE, FRODZRKRBOEITHME, RYDOETHRE, TYFS1Y, UJY—RBEELRE LN ST,
BRVIZETHTDMDIERLEFATLS.

Then, the state of the newly scheduled task is loaded and the task is run.
TDE, TR a—ILENT-AR I DIRED, FEHAEN, FRINETEIND.

Obviously, as this represents a non-productive overhead consuming certain processing
capacity, it should be kept to a minimum by choosing the most adequate task scheduling
policy.

LM, CAEENEDENA—N—AYREFENELRTEDNEENEEKRT DL,
ZhiE, RLBEUGERIDR 72— IV AHERIRT 52 &IE-T, RIMRICHIZADRETH
3.

*F—N—=AYk . HIMEETIEE FREDLDITBELGIERDIR (RLIBFFRE - HFE A
E—ERE) LIFHI, ERDESNR - EE - RNBLGETRELLLHFHFHIAR

Multitasking must be supported by operating systems.
RIVFRRYIE, ARL—TA4U T O RT LICE>TREBESN AT NIEESAL.

Any one mainly supports

its own scheme of tasks states and transitions or has, at least, different names for them.
FIZENAD—DIE, FRVDRELEBEBODBEDRAX—YEXIET S, FIFDLEKELERTIC
NI HEGHBEERED.

A typical, simple but sufficient task state transition diagram is presented in Figure 2.3.
BB, SUTIVTHYENS, +HHEARIDREEBRIL, B 2.3 1TRY.

In this model, tasks may assume one of the following states:
COETILTIE, BRVEROVT NI DKRELZRRET HIEAHESD.

Dormant (also known or terminated).

RIERRE (FTf=, Mo TULSHIKEE, LTI T LIIKEE)
Once atask is introduced in a system by its initialisation, it enters the dormant state.
BZRE, MEEIZESTORATLIZRY ANnoNdE, 2R VIFRIEIREEICAS.

Here it is waiting to be activated by an event.
ZCT, BRYIE, ARVMIE>TEHILTNADERHF>TLVS.

Further, when the task accomplishes its mission and terminates in the “running” state, it is
brought back to the dormant (or, in this case better, terminated) state.

oI, TETHRPREICENT, FRINFIRIDO B ZETL, BTSEH, 2R 73K ERK
BCOGEERL FERTIEONIKRE)ICRENS.

If for any reason a task is not needed any more in any other state, it can be aborted, i.e.,
put into the dormant state again.

AISHADERIZKY, FRINMMMOKREBIZEVTENA U ESRBEINGINMES, FRVEEFELEESH
BIENHRD. TahL, BUKIEREIZEMND.

Ready.
EITRIHEIRRE

A task in the dormant state can be activated by an event and then joins the set of tasks
ready to be scheduled for execution.

RILKBEIZE T BDRRIIE, ARUMIE-TEMHILSNDSIENHE, TDIE,
ETTBEDICRTDa—ILENEENTELEFEDHEI-2RIDEEITMALNS.

Such a task enters the ready state.
ZEDEIGRRIE, EITAIREIRREICAS.

A task can also enter this state when it is pre-empted from running, or resumed from
suspension.

FlRENERSNE, FEAEMTRENSEIVAENTE, 2RVIE, COKEICHLAST
EMTES.

Upon occurrence of any event changing the set of ready tasks, a scheduling algorithm is

invoked to order them, according to a certain policy, in a sequence in which they will be

executed.

EITAIREREDIRVDEEEEET HEEDANUDRERIZ,
RFoa—N) G F7INTVXALIE, BEDRI)D—IZHST, FRIDBEFTINSTHAIIEFTH
RY%EIBF DT30S D.

If a task from the ready set has lost its meaning for any reason (e.g., it was explicitly aborted
by another task, or its waiting time for resources has exceeded, so that its deadlines cannot
be met anymore) it can be aborted to the dormant state.

ETARELGEREENOARIN, oA DERBIZIE, ZADBDEIRVIZL>THIEICHEHSN
fz, FRETYRSAUDNBEOBIZINSIEAEERLZNO, VY—RIZHT SFEEEHEHE
BLE)DEBICEKRELR>TLESBE,

EITAIRELREREDRRYE, KRILREITH B UoN A ENHKS.

Running.
RITHIRE.

As a result of scheduling the tasks in the ready state, the first task in the sequence is
dispatched to the running state, i.e., to be run on the processor.
ETARRBICBITEIRIER T 12— VT LIFERELT,

IEZFEDRADREAIIE, EITHIREITEYZEN 5.

BIZIE, TOEyY ETEITSINDIENEXKD.

Eventually, it is terminated, when finished, or aborted to the dormant state.
I, IRIBIREEAITE Yo NSD, BATF, TR TS,

A running task can be pre-empted, i.e., its execution is discontinued and the processor
allocated to another task, and it is brought back into the ready state to re-join the set of
ready tasks for further scheduling.

EFPDOARIIE, EYRAENDFAREENHS. Thbs, EFATHESHh, TOEyHAZDIF
NDRRVICEIY B ToN, ZLTELREIRT D21 T DD —EDEITAIREIRVEE
ERTBEHIZBUTIZET.

Pre-emption is related to certain overheads, so one always strives to minimize the number
of pre-emptions to the lowest amount possible.
BYAAHD1DIFEIZ, FAIRELERY D EKEIYAA DY ER/INRIZT 51=HIZHA TS0,

YRR L, FEDA—/N—~YRIZEEELTS.
Suspended.

If the running task lacks certain resources for further execution, or if any other precedence
relation calls for deferral through a synchronization mechanism, its execution is
suspended.

EITHFDEIRVEELIZRITITAHDRED)V—ABNFELTWDIEGES, £IFXthD@EIE
HRAERA, BHIAN=ZALENLTEPZERT HIHE, EITHIRIDERT(E, hEEhd.

Once a certain condition that the suspended task is waiting for is fulfilled, it is resumed and,
thus, brought into the ready state again.
EITEINEEETRIREDIR I FOTLDEWIIREIL, BESh, 25LT, BUETARE
KEEIZH2D.

If, on the other hand, due to excessive waiting, the task cannot meet its deadline, it is
aborted and a certain prepared action is taken in order to deal with this situation.

—AT, BELGFHLNERT, FRINTYRSAUEERTELGINMGS,

RRYIEHEEN, —EDEBITENZDRRICKHLT H1-0HIzEbnD.

Task transitions are performed when certain events occur.
BEDANVIDFELEL-F, 3RIDEBHARITIND.

These may be external events, e.g., signals from the process environment or arrivals of
messages, timing events, when a time monitor recognizes an instant for triggering a task, or
internal events, when, for instance, a semaphore blocks execution of a task.

BALEZED, FRVFERIETRBARUIESIZEIT O DBREERHLE, HIZIE £<2
ADFIRIDEITEMELET BB,

TNLIEINEBARU LD MELALLY.

BIZIE, AvtE—CDEIFER, TOCRRENMNDEES®L, 213V T 1Dk

K BAZIVT ARV EEDOBREERZ(CO—REEITTAHIENARETH A E(Java)

Internal events can also be induced by other tasks.
REARUM, ZOMDARIIZE>THESN DAL H .

Instead of explicit operating system calls, tasking operations should be supported by
adequate language commands.

BAREGARL—T AV T VAT LA—ILORDYIZ, RBRVDRER, BT EEITURED
TXESNHREL.

An example of an apt set of tasking commands will be given in Section 4.1.2 in Figure 4.6.
BRJARUFQBEYEEEDHIE, B 4.6 ITENT412ETRY.

2.2 Scheduling and Schedulability
Riroa—) oG R FD a—)L ATREM

In Section 1.2.1 it has been established |that predictability of temporal behavior is the most
important property of embedded and real-time applications.

1.2.1 ETIE, —BMERSEVOFRIAEEMEIEL, VT ILRALTIT)r—a v EHRAHT T
Dr—3 DRIVEELRTOANTATHLHIIENEILINTINS.

The final goal is that tasks complete their functions within predefined time periods.
G BERE, FRIDEORREAPLURICIRIDEEEZT T T H5THS.

Thus, when running a single task it is enough to know its execution time.
W-T, B—DERYMNEITY 58, TOERTHEZHMBIZE+7THS.

Dynamic embedded systems, however, must support multitasking.
LOLEAS, BIMGHARAH D AT LK, TILFIRIEXBETRETHS.

There is always a set of tasks which have been invoked by certain event occurrences, and
which compete for the same resources, most notably the processor(s).
BICHEDANVNDREEICLS>TIIEFRIINERIDES, ZLT

FECVY—X, FTHEEHITAEZETAY Y ERLIDICEIIRIDEENFET S.

Since all of them have their deadlines to meet, an adequate schedule should be found to
assure that.

INEDTARTH, TOHREB-ILZ TN ELESLEVDT, BEEGER TP 1—ILIFEIRZE) R
AT B-OICHKREINEINETHS.

The pre-condition for being able to elaborate all these tasks is, of course, the availability of
resources.

TRTDIDEIEFRVERERTEDLLIITT DO DEFEHKF, 2554, JY—XDFIAT
EHEEVLTHS.

Lawson [76] presented the concept of resource adequacy meaning| that there are
sufficient resources to guarantee|that all processing requirements are met on time.
A=Y, $RTOTOEv Y OERDVEMEBYISERIND LRIET 510D, +273)Y
—ADHEHEEERT H-HD,)V—ADEEMEOBEER LT

A schedule to process a task system is called feasible if all tasks of the system meet their
deadlines (assuming the above mentioned resource adequacy).
LREDVV—RADEEMERETHNDT,
DATLDTRTDIRIMNENSDTYRTAUEERT DIHE,

RRYO AT LENET HI-ODR 71—)LIE, EITAIRETHAHEEEINS.

Atask system is called feasibly executable if there exists a feasible schedule.
ETARLRT S1— L BFET HHE,
BRYVATLIE, RITTEDRIITEITAIRETHAHEMFEND.

At run-time, a scheduler is responsible for allocating the tasks ready to execute in a such
way that all deadlines are observed, following an apt processor allocation strategy, i.e., a
scheduling algorithm.

EITHET, BULGT Oy EY S TERE, $00bR 71— 7T X LIZHES T
0,

AR7Pa—3&, TRTOTIRSAUNBRAESND LIGIKRET
ETTHEMHETCNSERIZEIY L THILIZEAET 5.

A strategy is feasible if it generates for| any feasibly executable (free) task set a feasible
schedule.

FILITIVALA, FEDRITTEDIIITETIARG(FEHLNTLEN)ZRIANRITARELRR T
Da—IVERET AEHICERSN-GE,

BIR(R7 21— I TIVTYX L) EIETARETHS.

Another notion concerning feasibility of a task set is schedulability:
—EDARIDEBRAREEICEET AR ORI, R7Pa—) Al TY .

the ability to find, a priori, a schedule such that each task will meet its deadline [108].
Fhahs, BERMIZ, TRENDIRIBENENDEIRIDTIRZFAVEERTHIENTES
FIGRTDA—IVERT O DEEN

Sometimes it may happen that a task cannot meet its deadline;
F(IX, BRIDZRIDTIRSAVEERT HTEMNERGNEMNEIHATREEA HD.

in hard real-time systems this is considered a severe fault.
N—FUTIWEALDZATLIZEWT, CREFEXGEFTERGESNS.

It can be a consequence of improper scheduling, or of system overload.
ZTH(EXRGESE)E, FBENGR7D1—I0T, FREVRATLDF—N—~IFDHERTHD
AR S S.

In the former case this is due to selecting an improper or infeasible scheduling strategy.
BB (REYNGERT D 1— T IZKBEE)DIGEICIE,

NIE, REULGRTD2—) T EEE, FEAFARELGRTD1—) TEIRERIRT 52 LIC
£5EDTHS.

In the latter case the specification of system behavior and, thus, the dimensioning of the
computer control system was wrong.

BEBCARTLDA—N—~YRIZEBZEE)DIGFEIZIL,

DATLDEMEDERRE, LITHRARIZESIZ, aVEa—FKIES AT LD T4 A Da=2 T hiiR
2TV

To prevent such specification errors, it is essential to have — prior to system design — a clear
understanding of the peak load a system is expected to handle.
ZDEIGHERDRYZERCEOIZ,

VAT LDBREST SIENRAFINIE— VRO AL (E-ZYELEBTLIEATARTHS.

As it is not possible to design, for instance, a bridge without knowing the load it is expected
to carry, so it is not possible to design a real-time system with predictable performance
without estimating the load parameters and task execution times.

BIZIE, XADENBRENDAF(BERSNDIETADMME)ZHSLNT, BEHREHTHIE
[FARATHEAR KD,

BRODEITHEBEATNSA—EFERIELLELGFRIRIEELNTA—I VAT TZILEA LY
ATLEHRETTHEIETERLL

In order to estimate correctly the necessary capacity of a system and, thus, prevent
overload situations, a proof of feasible executability or scheduability of occurring tasks set
has to be carried out in the planning phase.

ELKBEGVATLOREL, BAFIKBEHTE T H7=0I(2,
RETDRIRIEYIDRITTESLILGRITAREM TR IXR T a—ILAIREMEDEERA(E, FTE
RS TERITTREE.

|

This is a difficult problem, especially in dynamic systems with task reacting to sporadically
occurring events.

hIE, FICEERMIICRET DANUMNIRIGT DFRVEECEBGV AT LIZENT, #LL
BRETHS.

There are methods that may provide such proof, cf. e.g., [108].
ZTDEIGARZRMT DENTELHENELET S, HIZAIL, [1081 25,

Their complexity, however, can easily become NP-complete, and the methods may yield
rather pessimistic estimations.

LIWLGEASZDEHSIE, BHEICNP TLIGEHIEMNTE, Fi:-

ZFDHEF, MEYEBRWGHEZELSELAREMELHD.

A decision problem C is NP-complete if

1.itisin NP and NP &FEENSMBOEFY L. BEDEZ (Yes/No) EZDIKRHA 1A HMNOTLER
EZDBEZNELLNEIDDFVIFIRBEITECLEIMAE. £50\ o-RIEDEFY

2. it is NP-hard, i.e. every other problem in NP is reducible to it. --*NP-hard (MFIENZREREDE
FYIK, (T TITHARF)NP EFFENSEBEDOEDEBELYH. ALMA TR LU EIZHLLENZ HREEDEEY

2.2.1 Scheduling Methods and Techniques
AR a— oG A)yRERT D1 —1) 25 Hiifi

Scheduling policies fall into two classes, depending on whether|the tasks, once executing,
can be pre-empted by other tasks of higher urgency or not.

Riroa— Yo T hRttE, —EERTTEIRIH,
FUBRZEDBIMEDZRVICES>TEIYAENDAREENH LM, LULIDEIMIZEST,

2 DODYISRIZHEEESNS.

For scheduling dynamic systems, pre-emptions are necessary in order to assure feasibility
of the scheduling algorithms.

BMGS AT LERTD2—) 0745181,

BVAAE, RO 2— T T7INTVXLDRRAIREME R T H-OITLETHS.

In this subsection, two scheduling policies, fixed priority and rate monotonic scheduling, will
be elaborated.

OtV avTE, BEIEMZEEL, BRGR7O1—)UJEFET S
2DDRTVA—) T HHEFHBISERSDEYL

Deadline driven scheduling policies, which are problem-oriented and more suitable, will be
covered in more detail in the next subsection.

BIREIEAT, N OLYBU LT IRSAVERBIR y P a—) 0T AT,
RDEIavTEYFEMICRSIDBY L.

Fixed Priorities

& 7 O 2 e IR iz

Many Popular operating systems, which are currently most frequently employed in
embedded systems, base their scheduling on fixed priorities.
HE—RRIHARAAS R T LATRVERICEASATLS
ZLDORBRATDARL—TAVT VAT LR, BEDEBEIEMICESINVTRYa—)0T%

p—~

17°2.

The advantage is that the latter are in most cases built into the processors themselves in a
form or priority interrupt handling systems.

ZOFRIE, BEQ DORTDa—I T AEHD ?2)0NT+—L, FEBEIBLEDOEYAHL
BOZRTLIZEITS, 70y BHIHEARAFRTNSIEEAEDEHITHLHENIZETH
.

Thus, implementation is fast and simple.
#-T, REF, AEMNOEETHS.

As scheduling criteria, however, priorities are not problem-oriented, but artificially invented
categories not emerging from the nature of the applications.

LAOLGEDNS, R7Sa—Yo T OEZELLT, BEIBRIE, MREIER TEAL
NEWIZTI)r—a0 OMENELENATIYERBALL:.

properties (frequency of their invocations, required resources, temporal tightness, relative
importance, etc.).

[RENELT,

TRTOZENLEDTANTA(ENODOFUHLOBEE, BRSNS Y—X, —BHLZEER,

Designers tend to over-emphasise relative importance, which leads to starvation of other
tasks waiting for blocked resources.

|ETE L, BilF o=V —REFO>TVDETDMDERIDILEFIE(BEZ) DN D

MM EEMZBEICHR T HERLNHS.

Priorities are not flexible and cannot adapt to the current behavior of systems.
BEIRCIIRRTEEL, YATLDREDIRDFEVICIRE T HEAHELL.

For these reasons, it is not possible to prove feasibility of such a policy.
NoDEAMND, TOLIGEHHOEHAIREMEEHAT S LT TELL.

Once a task is assigned a fixed priority, the scheduler allocates the resources regardless of
real needs of that and other tasks.

AZVE, BIEDEEIEMLZEYETONEE,

RTTa—5&, HDIRVEMDIRIDED=—X(Zhhh 5T, JY—RZEEIYHTS.

As an example, let us consider a situation of three tasks with arbitrarily assigned priorities;
see Figure 2.4.

FIELT, FEICEVHTONIZEBERIERAT I DDIRIDIKREZEZTHELLD.

Thabhs, B24%FR&.

As we can see, the selection of priorities was unfortunate:
BEABNRTHOMNSEIIC, BEIBLLOZERIEEAZEL.

the lowest priority task misses its deadlines, although the laxities of the tasks are relatively
large.

BRY DIFHMELBREKRENTIED,

RLEBEIEMDEVNIRVE, TOTIRZAUEZHT.

Possibly, the importance of a task suggested it be assigned the highest priority, although its
deadline is far and execution time short.

BT FRVDEEEI,

RARIDTYRSAUH, 2 DD536RVNVATHY, ETHREIISEVITNED,
RRAVDRLEVMEEIEMEZEIYETONSIE

ZEKRT 5.

A feasible schedule, however, is possible by simply overturning the priorities, as shown in
Figure 2.5.

LOLGhA D, BITAIREGR 7D a—)LIE, B 2.5 TRY LIIT,

BB EIRMZEZE I CEANTRTHS.

Further, a number of problems emerge from the priority-based scheduling policy.
512, ZLOMEL, BEIEMIEROR 72— T A#MNENS.

For instance, if there is as set of tasks of different priorities requesting the same resources, it
could easily result in priority inversion:

BIZIE, RCVY—RZERLTWSELHIBEIRLDIRIDEEN H DGR,

Thid, BEICBAIECOFEEZLI-0T IENHKS.

a low-priority task pre-empted by a higher-priority one is blocking a resource and, thus, the
execution of all those that wait for the same resource.
BEWNEEIBEZOZRVIE, GWMBERIBLLOARIMN)Y—REWHIT TSI EITE>TEIYAEN
%. W2oT, ENLDERITIFRLIY—RZEFDIIEITES.

In this case the waiting time cannot be bounded.
COEHITE, FEEEIETHREREDIFToNL.

The situation is depicted in Figure 2.6.
ZOIKRIE, B 2.6 TRESNTLD.

One of the attempts to cure this inherent problem uses priority inheritance; see Figure 2.7.
CHOBEEDHEEERRLESIETHHAAD— DL, BEIEHOMAEZIATIHIZLTHD.
Tlabhb, H27%2R&.

However, the system is now behaving differently than specified, namely a task is given a
different priority than originally assigned,&vhich disturbs the global relationships,|especially if
the resource is allocated for a longer time.

LGRS, DRATLIL, $CIEESN-LDEELST-IRDENET S.

JiEbhHb, 3X0F

Bz y— A EBEREYLTOR T B A EEEOEREYT2)
ROICEYVETON-BRIBHEFELLIBEIEMNESZONS.

The higher-priority tasks are still delayed by the lower, although for a shorter time.
EWNMBEIELDZR I,
ERFEICEALTTIEHSD, BLMBERIEFRZDOFIRVIZE>TELITELEINS.

Further, a track must be kept of which resources are allocated by which tasks.
I, oYU, UY—RADBRRIIZEHSTEIV B TONEIESE
FRELEGIT NG IEESA.

Another widely used, but only slightly better policy is round-robin scheduling, where each of
the ready tasks is assigned a time slice.

LIV EDBELEDLA TS,

FADLPLRVARIE, TRENDOETARKREBIRINFIA LRSI RZEYHTOND, T
VRAEVR a1 THS.

Needless to say, the policy is not feasible unless the temporal circumstances of all
competing tasks are more or less the same.

EOFETHL, AL,
BREOELHLINBEBEET)RILTHAITRTORET IR ID—FHIKIRERNT,
EITAIRETIEALN.

Rate-Monotonic Priority Assignment

BIENERGEEIRLEY ST

There are other policies to assign priorities to tasks which are more adequate to solve the
scheduling problem.

Riroa—)27 DEEERIRT 51012, KYBEIGEARVICEBEIBRZZEIY S TS,
ZTOMDAEHIHS.

Well-known and particularly suitable for periodic tasks is rate-monotonic scheduling.
BN THEY, HICRAHMIRIICHLTELTWSED(E, BIENBEALRrS2—)0JT
Hd.

It follows the simple rule |that priorities are assigned according to increasing periods of
periodic tasks|— the shorter the period the higher the priority.

ZHh.(rate-monotonic scheduling) (&,

BRIEAA, BHAN2RIGEVHRTIIBEIRUASGD)DEMYT HHMISLTEYAET
b, | BEGERAICHES.

The policy is feasible, and it is possible to carry out schedulability tests.
ZDHEIEETAEETHD. LT, RTD21—ILAEEEDTRNEEITT HIENAEETHD.

In their widely recognized publication [80], in 1973 Lie and Layland considered periodic task
sets whose relative deadlines equal their periods.

[G<ERENSN TULVS HARI[80]IZH LT,

1973 £IZ Lie & Layland [,

ZhoDEMIZELL, BHHERIDOKREDERAMLET YRS AU ERETLT-.

All n tasks were assumed to start simultaneously at ¢ = 0 and to be independent, i.e., there
exist no precedence relations or shared resources.

ITRTO nBEDERIIE, =0 TERFFIZHIRYT S2EE, EWTRITHAHERELL-.

Yhahb, BEEORERELEEBSINL)Y—RFHFELEGL.

Under these assumptions they proved that rate-monotonic priority assignment yields a
feasible schedule if

ZTNOMBEOTT, Hold, LTOXDIGE,

BVATOERLGEBEIRCLEY L TH, RITARELGRTO1—ILEEMT H EE

SEBALT=.

U<n (2% - 1) (2.1)

where U'is the processor utilization
UlE, 7Rty dDERETHS.

U= (2.2)

n
C;
T.

i=1 !

The utilization of the processor by n rate-monotonically scheduled tasks is shown in Table

2.1

n QFNETHRAIIRTD21—ILENTZRRIIZES

TJOeyOEREE, k2.1 ITRSNS.

As an illustration, a Gantt chart of the feasible schedule of three tasks with their priorities
assigned rate-monotonically is shown in Figure 2.8.

EHELT, BIEEAEYVETONEBEIRGELZRFED 3 DORRIDEITARELGRFPa—)L
DAV FY—rE, B 2.8 ITRENSD.

The overall utilization is 0.72, with the maximum for three tasks (from Table 2.1) being 0.78.
0.78 £752 TS 3 DMARY(F 2.1 KY)ITxH T HmKELLELIZ,
LARDOEREL0.72 THD.

In the next sample in Figure 2.9, the attempted utilization is 85%.
29 [ZBITHRDPIZHNT, StESNI-FERZET 85%THS.

As a result, Task 3 only receives four units of service time in its first period, is then
pre-empted by Task 1, followed by Task 2, and misses its deadline.

BRELT, 2RI 32D, RYMDEAMICEWLTH—ERBFRD 4 DO1=yhEZE>1-FFIZ,
BRY2%EFRITT, BRY 1IZE-TEYRAEN, ELT, FRIDTYRSAVIZEALLN.

For a large number of tasks, Equation 2.1 returns the feasibility bound
RRYDEMNENEE, K 2.1 (F, THXTHEIShI-ATREMLZIRY.

1
lim n (23—1) =1ln2 = 0.69

n—->oo

Thus, it is proven|that the policy provides an adequate and feasible schedule for any set of

ready tasks as long as the utilization of the processor is below 0.69.

#-oT, TRy Y OFEREN 0.69 2 FE->TLAMIL,
ZTDHEE, EEORITARKEDIRVICHT D, BYINDORITAIGRLBRATVa—ILERMH
Y HLEELASND.

Renouncing 30% of processor performance and using rate-monotonicity, it can be
guaranteed that the schedule is always feasible.

T0tyvy OHRED 30%EMEL, BISERAMEH AT 56,

ENIE, R Da—)L ANEICRITERETHAHZELRIASNDENTES.

The feasibility bound of Equation 2.1 is sufficient but not necessary, i.e., it is possible that a
task set will meet its deadlines under rate-monotonic scheduling although the condition is
violated.

X 2.1 OETAIGEDRRIE, BETEHEGLD, +7THD.

Thahb, FRIDEEH,

FHEERLTVWSITNE, BIGHALBRT 21—V T DTT, FRIDTIRSZAVEERT S
CENHEKDHILETREIZT D.

Bini et al. [8] proved that a periodic task set is feasible under rate-monotonic scheduling as
long as

Bini (&,

FEM2RIDEEF, LTOREE-IH, GEHBART7S21—Y DT T, EITAIRETH

B EZERIALY=.
n

C;
—+1) <2
L 1\T;
1=1
This schedulability test, which is known as the Hyperbolic Bound, allows higher processor
utilization.
CORTDa—)LATREMTAME, BLVTAEyYDORAE2EET S, NHROEHELELTHSN
TW%.

It tasks into account that the schedulability bound improves if the periods have harmonic
relations.

ZN(TAN)E, R7Oa— LA REMDORED, TOHMIERROEFZREF>TLSIEEIC,
WETHILEERETD.

The rate-monotonic scheduling policy relates to periodic tasks.

BEHRPR T 1—) T DAL, AR VICEELTLS.

With the assumption that non-periodic tasks can only be invoked once within a certain
period of time, in the worst case sporadic tasks become periodic;

FEREARRI DA, —EDHBERNIC—ELFFUHTIEAEELIEVNSREDTT,
xEDIGE, BRI, BEMIZES.

thus, rate-monotonic scheduling can also be used for them.
W-T, BIEBEARTDa—I0TH, TNo(FERESRVEMBEIZARY ?) ITHLTHIAT S
CENHES.

2.2.2 Deadline-driven Scheduling
TIRSAVEREBR o2 —1) T

Following the ultimate requirement for real-time systems, viz.,| that all tasks meet their
deadlines,|leads to problem-oriented deadline-driven scheduling.

TP IWBALD AT L, TEDHLE| TRTDIRIDEZRIDTIRZAVEERT D] VT ILEAL
AT LITHT BRBGERICHSZ L, MERRATYRSAVEEBRrPa—) 07 %#8<

The artificial priorities of tasks are no more relevant.
ANBIZKDFRIDBEIELLIE, BIEORRESELGRLN.

In some adequate scheduling algorithms, properties are only used in oder to handle system
overloads;

WODDBEIGER 72— T T ILTVXLIZENT,

BRIELLIE, YRATLDBAFTERET HEHIZEFIZFASNDS.

in this case, priorities may indicate which tasks must be retained under any circumstances,
and which one may be gracefully degraded or renounced.

_DinE, BEIEGIE,

ARV EHIRR TICEVLTHREFSNLGRED, F:,

LIVED(?) NBEYIZHDBEESNDD, MESNDEAREMENHHLEEKRT 2N BLLNLL.

There are several deadline-based algorithms, actually rate-monotonic scheduling as
described above being one of them.

LD TYRSAVIZEIKTILTYXLIEFET .

ERIZ, ZDH>5D—DTHAHLETHBALIZLIBEIGHAR 21— T THS.

Some observe deadlines themselves, and others schedule tasks according to slack or
margin (the difference between the time to the deadline and the remaining execution time of
a task).

WOMNETYRSAVBEREEHREL,

ZTOMDRT 21— ILIE, RASVIRI—VU(RRIDERETIRSAODEDEEL, FRIDE
TREORY)IZIECT, 3RVEETT 5.

One of the most suitable scheduling algorithms is the earliest deadline first
scheduling algorithm [80].
BRLBELERTD1—) 97TV X LD—2IE, EDF R 22— T 7TV LTHS.

*EDF: YT AL LARL—T AT AT LTHEBASNIFHR 12— G HAID—FE.
AT A=V TARUIRBRETEHE(BRIRT . FIREIRVERLE). TDFXF21—%#FEFRLT
RLETHR(TYRSA)AENTOEREESN

Tasks are scheduled in increasing order of their deadlines, see Figure 2.10.
BRYE, BRIDTIRSAVDRIBT, RrPa—)oiEns. B210 2R &

It was shown that this algorithm is feasible for tasks running on single processor systems;
Bi&, COTILTYIXLD, o0 Tatey o AT LICBLWTETLTLS2RVIZHLT,
EITRIRETHAHEETRT .

with the so-called throw-forward extension it is also feasible on homogeneous
multiprocessor systems.

Whd, RO—T4+T—RDHkiREREEEDIC,

ZhiE, AEOTILF IOy AT LIZEVWTHLETARETHS.

However, this extension leads to more pre-emptions, is more complex and, thus, less
practical.

LGS, COIRRBEENEY ZLDEIYAAZEL-0TILF, KUEHTHS.

E-T, ERAMIEDEL.

To be able to employ the strategy earliest deadline first, it is best to structure real-time
computer systems as single processors.
EDF DOEREZRAWSIENHEKDLSICT B0, o LTaEyd D &SI TILEA LD

VEA—RVRATLEBETHENRETHS.

The idea can be extended to distributed systems, by structuring them as sets of
interconnected uni-processors, each of which dedicated to control a part of an external
environment.

ZDTATTIL HEEKSNT,
NMRBEO—BEFIETHLICEIL-TNEADIZTOEY Y DI LTENLEEE
FTHILITEST, BB AT LENRT HIEMNHES.

This is actually not a very critical limitation because of the nature of application tasks
occurring in control.

CHIEERRIZ,

FIEHICEVNWTRET BT IVT—2a 3R DHETHSH-O, 1BH TEELFHIRTIEEL.

To handle the case of overloads, many researchers are considering load sharing schemes
which migrate tasks between the nodes of distributed systems.
F—N—O—FDGFEENIEBT 5=, ZLOMEE(L,

DBV ATLD/—FETERIERITIHREFMT AT —IEREFLTLS.

In industrial process control environments, however, such schemes are generally not
applicable, because only computing tasks can be migrated.

LHLGah s, TERMBREFIHRETIE,
ME—DIAVE1—TAV T FRIDBITEINSAREEN H DT,

ZDEIGRF—IE, —MMICITBERTEEL.

In contrast to this, control tasks are highly input/output bound, and the permanent wiring of
the peripherals to certain nodes makes load sharing impossible.

CHEFBHIC, FIH2ROE, EBICAHIDRAEALHY,
BED/—F~DOEDHBOERRRIT, EFERXEIHEDNTAREIZLS.

Therefore, the earliest deadline first scheduling algorithm is to be applied independently
from considerations of the overall system load on each node in a distributed system.

#>7T, EDF R 22— T F7NLIAVALIE, RBOATLIZETEE/—FTOVRATLEEKD
BREOBERNSHILTERAINSINES.

The implementation of this scheme is facilitated by the fact that, typically, industrial process

control systems are already designed in the form of co-operating, possibly heterogeneous,
single processor systems, even though the processours’ operating systems do not (yet)
schedule by deadline.

ZDRF—TDEREIN,

— &M, 122 TRV DARL—TAV TV RTLD, TYRSAVIZE>T(FER) R a—
ILENTLVELELTE,

IEXMBRETOCRFEHRTL, BZToKERED, 2o 070wy RXTLIE, 3 TICHA
TEHMTERESN TS

ELWOEEITEOTRESNS.

Another scheduling policy based on deadlines, least laxity first, schedules tasks
according to their slack.

ZOMDRyoa—) 0T AL, TYRZAUIZEDL

LLF, R7 V21— ILIEENLDRBEMICIELTERIERITT 5.

*LLF: 7AtRA®M slack time (RBEM)ICEODVWTEEEFRTETS. —BICHAAHRT
L IR F IOy Y S RTFLTHER

It was shown that it is feasible for both single- and multiprocessor systems.
ThiE, 2o 07 0EyHERIILF Ity S AT LOBA TETARETHAHIIEN RSN
1=

By the algorithm, the task with the least time reserve is executed first; see Figure 2.11.
FIVT)XLIZEST, RIMFEERVDOFHIRIE, RAICETEIND. B 211 ER &

As a consequence, its reserve is maintained (accumulated execution time and the distance

to the deadline are both running at the same speed), but the reserves of other, waiting tasks

vanish.
HBRELT, TOHIBRNRESNS(BREERTHERBETYRSAVETOERATRAELLRILEST
EIT9 D).

LAL, ZDMOFHIR, FHKEDIRIMNERT S,

Thus, the reserve of one or more tasks being the next smallest reserve eventually reaches
the executing task’s reserve.

W-T, ROTZNDFIREESD 1 DULDERIDHIRIE, ZRBEIZEITHRDEIRIDHIRZE
Y %.

From this moment on, the processor must be shared among the two or more tasks in
round-robin fashion.
COBRENL, TatyHiL, SUVFOEV AKX T2 DULDARIBTRESNDINEL.

Now, their reserves are not maintained anymore, since their execution is shared, but they
expire more slowly than the ready tasks not execution.

zhiold, EALGVWETARERKEBOZIRIKY, oKUK T I HH,
TNODETEFEHEEINLDT,

S, TNODFHIRIE, BIFOHEFFINLL.

Sooner or later, the reserves of other waiting tasks will reach theirs, so that these tasks also
join the pool for switched execution.

EMNEM, TNODARVIE, REESNFEEITISHLTT—LIZSMT 5120,
ZOMDFLREDEIRIDHIRIE, ENoITELET S5,

Obviously, the overhead for context-switching caused in this way is high and usually
unacceptable.

oM, COFETELDETTEHTOTILDOUYEZDIZODA—IN\—~vF(E, B &
BIEZIF AN,

For that reason, the least laxity first algorithm is mainly of theoretical interest only.
ST, LLF ZILTYX AL, KED TR LEKENZTTHS.
(OFY, EREFFEZLLND)

In contrast to least laxity first, the earliest deadline first algorithm does not require
context-switches unless a new task with an earlier deadline arrives or an executing task
terminates.

LLF &(ExtBBAIIC, EDF 7ILTUX LI,

LRIDTYRSAVTHI-GEARINEIES B0, RITHERIDNR T IHHEEZEZRINT,
ETT5TATILDUYBEZDDLENGL.

In fact, if the number of pre-emptions enforced by a scheduling procedure is considered as a
selection criterion, the earliest deadline first algorithm is the optimum one.
KRR, R7 V1=V T FIBIZE>TRITESNDENVRAHDED, BIREZELLTEESINDS

A
=1}

EDF ZILIV R LIE, &#ELGETIVI)VXLTHS.

Even when tasks arrive dynamically, this policy maintains its properties and generates
optimum pre-emptive schedules [74].

BROWERIICEIFL-HBETHOTH,

COARF, TONTZ2#RL, ZBELGEVIAAR T 1—IVELERT 5.

This scheduling strategy establishes the direction in which an appropriate architecture
should be developed.

ORI 1—") BRI,

BULGT—FXTIOFvHABHLONIENEREAMMELTHEILTS.

The objective ought to be to maintain, as much as possible, a strictly sequential execution of
task sets.
AIREZERRY, BRI, BRBIZAR VY DIRRETEH L THEINEL.

The processor(s) need(s) to be relieved of frequent interruptions caused by external and
internal events in the sequential program flow.

TotyvHiE, ERITOATFLDORNIZEVNTRHEARUEENBARUMIESTEIEFRIEND
BGOSR ODELHD.

These interruptions are counter-productive in the sense that they seldom result in immediate
(re-) activation of tasks.

ENoOHEE, FEAEEEDFRIDE)FELZLLIE, EVWSEKRTIE, FEER
TH%.

2.2.3 Sufficient Condition for Feasible Schedulability Under Earliest Deadline
First
EDF O FCEITHRELRT D a— /LA REMICHT 5+ 0 &4

When deadlines and processing requirements of tasks are available a priori, the earliest
deadline first algorithm schedules the ready tasks by their deadlines.
TYRSAVERRY DB DERD, EERIIZEON D,

EDF ZILTURXLIE, ENoDTYRSIAVIZE>TEITAIRBIKEBD LR VER7D1—ILT 5.

Foranytime t, 0 = ¢t < o, and any task T € F (z) with deadline t, >t , from the set of

ready tasks F(t) with n elements, let

t N0 LEDEZEDEBTHY, TYRSAULA t KUKENEE, n BOIL AU EEDETH
BEIREEDARY FODEATD, EFEDZRY T X FOIZEEND. FOEITHRL, LITHARKY
2.

<t

a(t) = t, —t be its response time,
t, -t [FEEREELGD

[(t) =the (residual) execution time required before completion, and
BT IHHEICERSND(RY D)EITHFE

s(t) =a(t) — I(t) its laxity (slack-time, margin, time reserve).
TDPEHH(RTIVIEA L, 7—D0, BREIDFIR)

Then, necessary and sufficient conditions that the task set F(t), indexed according to
increasing response times of its n elements, can be carried through meeting all deadlines
for single processor systems, are

n EOERDOIGERBZEMEIELILITELTOIEERELEND, 2RItV FO)DLE+75E
HIE, Do NTaEy YL RTLISHT BTN TDTIYRIAVEER T HLETET HIEM
HES.

k
2 > Zli,kz 1,,n (23)
—

1

This necessary and sufficient condition determines whether a task set given at a certain
instant can be executed within its specified deadlines.

CORBETTEHIL,

BEOBRMBIZEAONTIZZR VYIS, EESNI=TYRFAVICHICETEINSIEAATRED
EIDNZTHIET S.

In words, it reads
EWMRZDE, TNIELUTDOKSICIEBBRTES.

If it holds for each task that its response time (the time until its due date)
is greater then, or equal to, the sum of its (residual) execution time and
the execution times of all tasks|scheduled to be run before it, the schedule
is feasible.

AN, FRIVDERM(FPEHABETTORMAKREL, FLERLEVIIEE, 21D

BIZRELTWSES,
(BYD)EITHMETRTOEARIDETEHBOEEE, | FhOREIZETINE=HIZR
FOa—)LEn, FDORTD1—)LIXEITEIEETHS.

In the ideal case, the earliest deadline first method guarantees one-at-a-time scheduling of
tasks, modulo new task arrivals.

WML —XTIE, EDF ARIE, =GR IDENFELZELTHFRIDRra—)) %E—
DI OREET B.

Thus, unproductive context-switches are eliminated.
®-T, FEENLBETITHTOTILOUIYEZE, Hrshb.

Furthermore, and even more importantly, resource access conflicts and many concurrency
problems among the competing tasks, such as deadlocks, do not occur and, hence, do not
need to be handled.

Ff-, SHICEELGILEI,

TYRAYIDEIE, VI)—AADTIEADBEER, AT HFIRIE D LD REEITHEDRM
REE, BELGL. /o T, FlfET HLEAELN.

Unfortunately, such an ideal case is by its very nature unrealistic.
BRIEMND, TDIIGERMGTr—XIL,
FEITZDHEIZTK>THEMNTITALL.

In the following, more realistic conditions will be considered.
LUTTIE, KYBRENLGERGENEETSHDOLYTHS.

Earliest Deadline First Scheduling under Resource Constraints and Feasible
Schedulability Conditions
)Y —RAFIFIERITAREBRT 21— VAR EBEDHETD EDF R 22— T

The above considerations have revealed that the earliest deadline first algorithm is the best
choice for use in a general multitasking environment, provided that the tasks are
pre-emptable at any arbitrary point in time.

LERDOEEFIEIL, EDF 7TV XLH, FRIBEEOVT A DE R TEIYRAFEND,

— R ILFRRVREICEVWTH AT 5O ICHREERTHSEZHLMITL,

Unfortunately, this pre-condition is not very realistic, since it is only fulfiled by pure
computing tasks fully independent of one another.

BEEMNE, BEWVCERICHII LML I Ea—TAV T 3R VICE>TDHETINDSIZ
0,

COEMEHIEEREICHERTIEGL.

In general, however, tasks have resource requirements and, therefore, execute critical
regions to lock peripherals and other resources for exclusive and uninterrupted access.
LLzahts, —RREIIC, 2RVIXY—RERERD.

ST, ZRVIE, I THEESNGEWT 72 ADEHDMDY) Y —RE, BBKEREEET 5
ODEEREEZERITT 5.

Hence, the elaboration of a task consists of phases of unrestricted pre-emptability
alternating with critical regions.

®-oT, FRIVDFEREE, EELGEHEZREICANEZLFROLGEVEIYRAADIT— M
.

While a task may be pre-empted in a critical region, the pre-emption may cause a number of
problems and additional overheads, such as the possibility of deadlocks or the necessity for
a further context-switch, when the pre-empting task tries to gain access to a locked
resource.

RROM, BEEGEBICEVTEIYAENSAREELH DM,

BNAHBRROM, OvIEnt=)J—RIZT VALK ELI=FFIC,

BIYAAD, SHEHEFTTEHTATILOUYEZD-HOD, TYROYI DA REECHEMRED
K534, ZLOMBELEEMDA —/N—~AYRFEELIEIMBELNALL.

Therefore, to accommodate resource constraints, the earliest deadline first discipline is
modified as follows:

W®-T, YY—RHIIZx G T BT, EDF ORAE, RDOKLSITEBESHhS.

JEHB,

Schedule tasks earliest deadline first, unless this calls for pre-emption of a
task executing in a critical region. (In this case, wait until the tasks

execution leaves the critical regions.)

R7oa—Lh, BEEGEEICEVTRITLTWSERVDEIYAHZWHEELIZVRY, EDF T
RRAYERTIS.

Note that task precedence relations do not need to be addressed here, since the task set in
consideration consists of ready tasks only, i.e., the set consists of tasks whose activation
conditions are fulfilled (and, thus, their predecessors have already terminated).
CCTERIANEILIE, BEBHIIBITA2R VDY, EITAIREREBD IR V11T THEAK
T51=28, FRVDEXIBEOBEZRMN, CSTIERLTEILENGZNLETHS.

Tiabhb, FRIDYrE, ERIEOFHEEBRELIZ(ST, £TLTLV=2DIETTITERTL
TWB)RRID LS.

If all tasks competing for the allocation of the processor are pre-emptable, then the entire set
is executed sequentially and earliest deadline first.
TotEyHOEYATICEALTHRELTVWST RTOIRIDEIYAAREETHHLEE, IBREST
3h, EDF &7%55.

Therefore, the (partial) non-pre-emptability of certain tasks can only cause a problem if a
newly arrived task’s deadline is shorter than that of the task running, which is at that same
time executing in a critical region.

HLCRIBELIEZRIDTIRSAUD, EELGREICE THRILHM TRITI HARITHDERY
DTIRZAVEYIENGE, HEDFIRID(—EHD)EIY AARBETIE LRI LA, BEFRIT
ZE|IERCT AN HD.

Hence, all tasks with deadlines closer than that of the executing task, including the newly
arrived one, have to wait for some time d, before the running task can be pre-empted.
WOT, FI=ICRBELIERVEEATVNS, RTHRDEIRIDTIRSIAVEYBENT YRS
DF RTORRYIE, RITROIRIBEIYAENLHTIZ, LOD DI d EHOBELNDS.

Practically it is not feasible to determine the exact value of d.
EEMIC, d DIEHEREEZRET HEE, FAIGETHS.

The most appropriate upper bound for d is given by the maximum of the lengths of all
non-pre-emptive regions of all tasks in a certain application, since this is the most general
expression fully independent on the actual time and the amount of resource contention.
h(&ELGER)E, ERFFEICEVWTERICHILERE—BRHGRE, VV—RFHEEDETH
1=,

d [Cx9 HmELELERIT, FEDTTIr—2avITBNT, T RTOERIDTRTOEIYRAE
NEVWEEOREDRKEICE>TEZALNS.

With this, a sufficient condition, that allows one to determine a task set’s feasible
schedulability at any arbitrary time instant under the above algorithm, reads as follows:
INT, LEBOT7ILITIVXLO T TEEDOHRICHITH2R 7V DETAGELER TP 1—)L
AIREMECD—2(?) I[TRETHIEZHAT 57 EHE, RDKIITEL

If a newly arrived task has an earlier deadline than the executing one, which
is just within a critical region, the schedule according to the above algorithm
is feasible if:

HzICRE LSRR ID, BEOEERLGBEDOPTHEIERTHDERILYLRNT YRS A%
BFO5A,

FROTILTIVXLIZEDRTDa—ILIE, UTDGEERTAIRETHD.

(a) all tasks, which should precede the running one (T;) according to the
earliest deadline first policy, have their response times greater than, or
equal to, the sums of

BLRVWTYRSAVDRDAEHIH ST, RITHDFRI(T)LYEELGMNEIZHEINET A
TDERIIE, U)~QR)DEHDISARRLYLREND, FLLELDZERED.

(1) their execution times,

(1) FNLDEITHHE

(2) those of all tasks in the schedule before them, and
@)FNBLDHEIDRTL2—ILIZEITEHTRTDOIRY

(3) d, the time required to leave the critical region,

Q) EERMEEICEIET H=OHICERSNLHEH d

i
a,(t) > d +ZIk(t),i =1, j—1 (24)
k=1

and

ai(t) = Z Ik(®,i=j,--,n (2.5)
k=1

(b) all other tasks have their response times greater than, or equal to, the sum
of their (residual) execution times and the execution times of all tasks
scheduled to be run before them:

ZRMDTRTDERVIE, BERBIYKREND, FLLLOZEHED.
ENoDREYD)RITHEEE, INTORRVDETHBDEEE, ENODHIIZRITINEGN
ETHHLERTVa—ILEND.

We observe that, if there are no critical regions, this condition reduces to the one holding for
feasible schedulability under no resource conditions.

EaE

BEEGHEENFELGWVGES, COFHE, JV—AOEFENFELGWRTEITARER 7Y
aA— /LA REEDREZR DOV EDITEBT S

CEEBETD.

When running tasks may not be pre-empted at all, a newly arrived task with an earlier
deadline has to wait until the running task terminates.
EITFDFRIMNEEIY A ENLUOATREED H DB,
RVBVLWTYRSAUTHRICEIBELIZAR VL, EFTFORIRINE T TLETHRIOLENSD
.

A sufficient condition for feasibly scheduling non-pre-emptive tasks follows as an easy
corollary from the result mentioned above.
B|YAASINIENRRIERITTEDLIICRT D207 50D+ 5EHE,
LRTERSN-HERIOEHEICHADFERELTHRS.

This modified earliest deadline first policy offers a practical way to schedule tasks
predictably in the presence of resource constraints.
COEFINERLBVT YRS ORI DH I,

JY—REFIDEFEDTT, FEBYICARVERTD21—ILT SO DERMNLGEHEE
RIS,

The policy maintains most of the advantageous properties as listed in Section 2.2.4.

ZDFHEIF, 224 ETREH SN TODIIBRLANGTEHMEERFEFTS.

In fact, the only property no longer exhibited is the attainability of maximum processor
utilization because of the pessimistic prediction of the delay in pre-empting the executing
task.

ERIZ, RITHFDOFRVICENVRAL ZEICHE T HEEDERHMIGFRIDHIZ,
LIFORENGEMNSFHE—DTONTAIE, FATO Y HEREOIEATREMETHS.

From the point of view of classical computer performance theory, this may be considered a
serious drawback.

HHMAGAVEL—EDNTHF—T U RABHROBR RN, ChlE EXGREAEZEETILEN
H5b.

For embedded real-time systems, however, it is not so relevant whether processor utilization
is optimum, as costs have to be seen in the framework of the controlled external process,
and with regard to the latter’s safety requirements.

LA s, $AHRAH) T ILEA LD AT LITHL,

Oty ERENRENE I TE R,

AR, HESA-RETOy Y OREADTE, BEOREERICHLTELONDIRNETH
D,

Taking the costs of a technical process and the possible damage into account which a
processor overload may cause, the cost of a processor is of less importance.

TotEyY OBRARNEIVSS, HfiTOERNDIRMN, BEXoNDIBEEEETHILIL,
TOtEyHDaRMHFEYEBETRHRENSI LS.

Moreover, while industrial production cost in general increases with time, the cost of
computer hardware decreases.

oI, —MEMICEREEHEITEMT 2T ELEEDIRMID NS,
AVEL1—BDN—FITF7DARMNEFE LTS,

Hence, processor utilization is not a suitable design criterion for embedded real-time
systems.

#-T, 7oy DFEREL, HHAB)TILIA LD AT LAIZRHLT, BLZRETRETIER
Ly

Lower processor utilization is, thus, a small price to be paid for the simplicity and the other
advantageous properties of the scheduling method presented here, which yields high
dependability and predictability of system behavior.

#®oT, BT Oy FEAZE,

ELMEEME, YATLDRSEVOFRIAREEEEAHET
BHIEDEOIZXIbNERE/NSEMHEES,
CCTRIRSINFRT Da—)T FED T DDA RGHFELHD.

Avoiding Context-Switches Without Violating Feasible Schedulability
EATAREAR T 21— LA REEIER T4 EHK, RITTHTATSLOYYEZZEET S

So far we have neglected the overhead costs due to context-switching.
CNFETICHARR, BTTHTOTSLDYYERISERT 57—/ \—AYFDIARMEEHRLT
5.

Now we demonstrate how some of the context-switches can be avoided, and how the cost
of the remaining switches can be taken into account.

5 EAE EQLSITVOMNDEFTTEHTAISLDUYEZHN BB TELHDH,

ZLT, EQLIIHYDRAYFDARMNEEET HEMNHEEKDH

ZEIAT .

Let us assume that the time required|to prepare a task’s execution Jand|to load its initial
context into the processor registers jas well as to remove the tasks from the processor after
the task has terminated normally is already included in the maximum execution time
specified for the task.

BRYMEEITHETLI=&IC,

BRVERTTDERET HELEERSNDHEHE,

Tty DL RZIRADIAVTFRAEO—RT 51O ICERESNSEHE ERIC,

TAEY Y NSRRI EEIRT BT ICERESNHEMIT,

P TIZARVIZH L THEESN -RAERTHEICEEFN TS,

This assumption is realistic, since these context-changes have to be carried out under any
circumstances and are not caused by pre-emptions.

NEDIAVTHRAMDERIF, EQXITKRD T TLEMEINGTNIEESLT, BIVIAAITE
STEIEFRIING O,

COREIFRENTHS.

Thus, we only have to account for the time required for a pre-emptive switch.
W-T, BERIFHE—ENYRAARMYFISHLTERSNDFEZEZ R T DLELHD.

Without loss of generality, we further assume that this time is the same for all tasks, and
denote it by u, and that to either save or restore a task takes u/2.

—MRMETRIILELL,

EAalk I

COBRBNTRTORFEICHLTRILTHY, ulZk>THREN,

ZLT, ARVERFET 5D, B g 50121 u2 DERNDIDDERET .

The following modified form of the earliest deadline first task scheduling algorithm not only
tasks resource constraints into account, but also avoids superfluous pre-emptions:
ROBEBVNTIRTAVDRIDEIRIDRT 2= T ILT)ALOBEEELIZLDIE,
)Y—RGMEBERT BT TEL, RAOGEIVAAZEET S,

Always assign the ready task with the earliest deadline to the processor,
unless new tasks with earlier deadlines than the deadline of the currently
running task arrive.

I, BEERTHOIRIDIEDTIRSIAL YL, BOTYRSAUEF OHTZGIRIMN
HFHELEGLRY,

BELRVTYRSA U TEITARKEDARVETOEYyHIZEIYIRS.

If the laxities of the newly arrived tasks allow for feasible non-pre-emptive
scheduling, then continue executing the running task.

HICRE L2 R DR EHH, RITARERLBEIVAADARTD1— 0 TEARICT 515

PAN

ERITHDERYDERTEMET .

Otherwise, pre-empt the task as soon as its critical region permits, and
allocate the processor to the task with the earliest deadline.

TNLSNDEE,

HELEZITRECERGHEED IR DEYAHZEFFAIL,
REBWTYRSAUTTAEYHIZARIZEY LTS,

Let us examine what occurs, when a pre-emption is required:

BIRAAHDNBERENSEZICRET HLDERFILTHS.

If a newly arrived task has an earliest deadline than the executing one,
which is just within a critical region, the schedule according to the above
algorithm is feasible, if:

H=ICEIELIAR IO, be 3 EBEELGEEBDOPTHARITHDEARILYVLBRNT YRS (V%
¥o5A,

EROTITIVRLIZEBRT Da—)LIE, LTOBEERTAEETHS.

(a) all tasks, which should precede the running one according to the earliest
deadline first policy, have their response times greater than, or equal to, the
sums of

(@ ZLRVLWTYFSAVDORYDAHIZH ST, EFTHDERVIVEELMEIZHEINETTA
TORAYIF,)~@DEFHDEARREIYEREND, FLLEDZRD.

(1) their execution times,

(1) FNDDERITHHE

(2) those of all tasks in the schedule before them,
@)FNLDHEIDRT 21— ILIZEITEDTRTDOARY

(3) the time d required to leave the critical region, and

Q) EERLMEEICEIET H=OICERSNLHEH d

(4) a half of the switching time u/2.
BRAYFT DH5 DEFRE u/2

i
u
a,(t) = d+§+21k(t),i —1,,j—1 (26)
k=1

and

(b) all other tasks have their response times greater than, or equal to, the sum
of their (residual) execution times, the execution times of all tasks scheduled
to be run before them, and the full switching time u:

ZRMDINTDERIE, WERBEIYREND, FLLLDZEFED.

ENoDEYD)ERITREE TNLDRIZRITIANE, ELTRELERMYF KR u TR
Va—IEN=TRTODERIDEITHER DA

a()>u+ Y L(t),i=j,n 2.7)
kz)

Note that only the status-saving part of the context-switch needs to be considered in the
feasibility check of tasks scheduled to be run before the pre-empted one, since they already
contain their start-up time.

CITERTREILE, TALIET TISEEFFHZEZEA TS,
ETTE5TATILEVYBZDRT—IRERETIHA T,
ZYRAENTZZRVDRNIETINERE,

AT VA= ILENTBRIDRTAREDFIVIIZENT,

EETIVLENHDHL

TH%.

For all other tasks, the total context-switching time u has to be taken into account.
DT RTHORRIIZHL, EITTEHTATILDUYEZDEHEFR u NEEINDIRETH
.

If there is no pre-emption, the feasibility check for non-pre-emptable scheduling applies.
BAADFELIGGS,
BYRAENLGWRTDa— o T b DETAREMEZFvITEHIEN BRSNS,

